专栏首页有三AI【TensorFlow2.0】数据读取与使用方式

【TensorFlow2.0】数据读取与使用方式

大家好,这是专栏《TensorFlow2.0》的第三篇文章,讲述如何使用TensorFlow2.0读取和使用自己的数据集。

如果您正在学习计算机视觉,无论你通过书籍还是视频学习,大部分的教程讲解的都是MNIST等已经为用户打包封装好的数据集,用户只需要load_data即可实现数据导入。但是在我们平时使用时,无论您是做分类还是检测或者分割任务,我们不可能每次都能找到打包好的数据集使用,大多数时候我们使用的都是自己的数据集,也就是我们需要从本地读取文件。因此我们是很有必要学会数据预处理这个本领的。本篇文章,我们就聊聊如何使用TensorFlow2.0对自己的数据集进行处理。

作者&编辑 | 汤兴旺

在TensorFlow2.0中,对数据处理的方法有很多种,下面我主要介绍两种我自认为最好用的数据预处理的方法。

1 使用Keras API对数据进行预处理

1.1 数据集

本文用到的数据集是表情分类数据集,数据集有1000张图片,包括500张微笑图片,500张非微笑图片。图片预览如下:

微笑图片:

非微笑图片:

数据集结构组织如下:

其中800张图片用来训练,200张用来测试,每个类别的样本也是相同的。

1.2 数据预处理

我们知道,在将数据输入神经网络之前,需要将数据格式化为经过预处理的浮点数张量。现在我们看看数据预处理的步骤,如下图:

这个步骤虽然看起来比较复杂,但在TensorFlow2.0的高级API Keras中有个比较好用的图像处理的类ImageDataGenerator,它可以将本地图像文件自动转换为处理好的张量。

接下来我们通过代码来解释如何利用Keras来对数据预处理,完整代码如下:

from tensorflow.keras.preprocessing.image import ImageDataGenerator

train_data_dir = r"D://Learning//tensorflow_2.0//smile//data//train" val_data_dir = r"D://Learning//tensorflow_2.0//smile//data//val"

img_width,img_height = 48,48 batch_size = 16

train_datagen = ImageDataGenerator( rescale=1./255, shear_range=0.2, horizontal_flip=True) val_datagen = ImageDataGenerator(rescale=1. / 255) train_generator = train_datagen.flow_from_directory( train_data_dir, target_size=(img_width, img_height), batch_size=batch_size) val_generator = val_datagen.flow_from_directory( val_data_dir, target_size=(img_width, img_height), batch_size=batch_size)

在上面的代码中,我们首先导入ImageDataGenerator,即下面代码:

from tensorflow.keras.preprocessing.image import ImageDataGenerator

ImageDataGenerator是tensorflow.keras.preprocessing.image模块中的图片生成器,同时也可以使用它在batch中对数据进行增强,扩充数据集大小,从而增强模型的泛化能力。

ImageDataGenerator中有众多的参数,如下:

tf.keras.preprocessing.image.ImageDataGenerator(

featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, zca_epsilon=1e-6, rotation_range=0., width_shift_range=0., height_shift_range=0.,

brightness_range,

shear_range=0., zoom_range=0., channel_shift_range=0., fill_mode='nearest', cval=0., horizontal_flip=False, vertical_flip=False, rescale=None, preprocessing_function=None, data_format=K.image_data_format())

具体含义如下:

featurewise_center:布尔值,使输入数据集去中心化(均值为0)

samplewise_center:布尔值,使输入数据的每个样本均值为0。

featurewise_std_normalization:布尔值,将输入除以数据集的标准差以完成标准化。

samplewise_std_normalization:布尔值,将输入的每个样本除以其自身的标准差。

zca_whitening:布尔值,对输入数据施加ZCA白化。

rotation_range:整数,数据增强时图片随机转动的角度。随机选择图片的角度,是一个0~180的度数,取值为0~180。

width_shift_range:浮点数,图片宽度的某个比例,数据增强时图片随机水平偏移的幅度。

height_shift_range:浮点数,图片高度的某个比例,数据增强时图片随机竖直偏移的幅度。

shear_range:浮点数,剪切强度(逆时针方向的剪切变换角度)。是用来进行剪切变换的程度。

zoom_range:浮点数或形如[lower,upper]的列表,随机缩放的幅度,若为浮点数,则相当于[lower,upper] = [1 - zoom_range, 1+zoom_range]。用来进行随机的放大。

channel_shift_range:浮点数,随机通道偏移的幅度。

fill_mode:‘constant’,‘nearest’,‘reflect’或‘wrap’之一,当进行变换时超出边界的点将根据本参数给定的方法进行处理。

cval:浮点数或整数,当fill_mode=constant时,指定要向超出边界的点填充的值。

horizontal_flip:布尔值,进行随机水平翻转。随机的对图片进行水平翻转,这个参数适用于水平翻转不影响图片语义的时候。

vertical_flip:布尔值,进行随机竖直翻转。

rescale: 值将在执行其他处理前乘到整个图像上,我们的图像在RGB通道都是0~255的整数,这样的操作可能使图像的值过高或过低,所以我们将这个值定为0~1之间的数。

preprocessing_function: 将被应用于每个输入的函数。该函数将在任何其他修改之前运行。该函数接受一个参数,为一张图片(秩为3的numpy array),并且输出一个具有相同shape的numpy array。

下面看看我们对数据集增强后的一个效果,由于图片数量太多,我们显示其中9张图片,增强后图片如下:

大家可以多尝试下每个增强后的效果,增加些感性认识,数据增强和图片显示代码如下,只需要更改ImageDataGenerator中的参数,就能看到结果。

import matplotlib.pyplot as plt from PIL import Image from tensorflow.keras.preprocessing import image import glob datagen = ImageDataGenerator(rotation_range=30,rescale=1./255, shear_range=0.2,horizontal_flip=True) gen_data=datagen.flow_from_directory(

r"D://Learning//tensorflow_2.0//smile//datas//mouth//test",

batch_size=1,

shuffle=False, save_to_dir=r"D://Learning//tensorflow_2.0//smile//datas//mouth//model", save_prefix='gen', target_size=(48, 48)) for i in range(9): gen_data.next() name_list=glob.glob(r"D://Learning//tensorflow_2.0//smile//datas//mouth//model"+'/*') fig = plt.figure() for i in range(9): img = Image.open(name_list[i]) sub_img = fig.add_subplot(331 + i) sub_img.imshow(img) plt.show()

说完了数据增强,我们再看下ImageGenerator类下的函数flow_from_diectory。从这个函数名,我们也明白其就是从文件夹中读取图像。

train_generator = train_datagen.flow_from_directory( train_data_dir, target_size=(img_width, img_height), batch_size=batch_size)

flow_from_diectory中有如下参数:

directory:目标文件夹路径,对于每一个类,该文件夹都要包含一个子文件夹。

target_size:整数tuple,默认为(256, 256)。图像将被resize成该尺寸

color_mode:颜色模式,为"grayscale"和"rgb"之一,默认为"rgb",代表这些图片是否会被转换为单通道或三通道的图片。

classes:可选参数,为子文件夹的列表,如['smile','neutral'],默认为None。若未提供,则该类别列表将从directory下的子文件夹名称/结构自动推断。每一个子文件夹都会被认为是一个新的类。(类别的顺序将按照字母表顺序映射到标签值)。

class_mode: "categorical", "binary", "sparse"或None之一。默认为"categorical。该参数决定了返回的标签数组的形式, "categorical"会返回2D的one-hot编码标签,"binary"返回1D的二值标签。"sparse"返回1D的整数标签,如果为None则不返回任何标签,生成器将仅仅生成batch数据。

batch_size:batch数据的大小,默认32。

shuffle:是否打乱数据,默认为True。

seed:可选参数,打乱数据和进行变换时的随机数种子。

save_to_dir:None或字符串,该参数能让你将数据增强后的图片保存起来,用以可视化。

save_prefix:字符串,保存数据增强后图片时使用的前缀, 仅当设置了save_to_dir时生效。

save_format:"png"或"jpeg"之一,指定保存图片的数据格式,默认"jpeg"。

这些参数中的directory一定要弄清楚,它是指类别文件夹的上一层文件夹,在该数据集中,类别文件夹为smile和neutral,它的上一级文件夹是train。所以director为 r"D://Learning//tensorflow_2.0//smile//data//train"

另外,class这个参数也要注意,通常我们就采用默认None,directory的子文件夹就是标签。在该分类任务中标签就是smile和neutral。

以上就是在TensorFlow2.0中利用Keras这个高级API来对分类任务中的数据进行预处理。另外如果您需要完成一个目标检测等任务,则需要自定义一个类来继承ImageDataGeneraton。具体怎么操作,请期待我们的下回关于如何利用TensorFlow2.0处理目标检测任务的分享。

2 使用Dataset类对数据预处理

由于该方法在TensorFlow1.x版本中也有,大家可以比较查看2.0相对于1.x版本的改动地方。下面是TensorFlow2.0中使用的完整代码:

import tensorflow as tf

#from tensorflow.contrib.data import Dataset

#from tensorflow.python.framework import dtypes

#from tensorflow.python.framework.ops import convert_to_tensor

txtfile=r"D://Learning//tensorflow_2.0//smile//datas//train//train.txt" batch_size = 64 num_classes = 2 image_size = (48,48)

class ImageData: def read_txt_file(self): self.img_paths = [] self.labels = [] for line in open(self.txt_file, 'r'): items = line.split(' ') self.img_paths.append(items[0]) self.labels.append(int(items[1])) def __init__(self, txt_file, batch_size, num_classes, image_size, buffer_scale=100): self.image_size = image_size self.batch_size = batch_size self.txt_file = txt_file ##txt list file,stored as: imagename id self.num_classes = num_classes buffer_size = batch_size * buffer_scale # 读取图片 self.read_txt_file() self.dataset_size = len(self.labels) print("num of train datas=", self.dataset_size)

# 转换成Tensor

#self.img_paths=convert_to_tensor(self.img_paths, dtype=dtypes.string)

#self.labels =convert_to_tensor(self.labels, dtype=dtypes.int32)

# 转换成Tensor self.img_paths = tf.convert_to_tensor(self.img_paths, dtype=tf.string) self.labels = tf.convert_to_tensor(self.labels, dtype=tf.int32) # 创建数据集 data = tf.data.Dataset.from_tensor_slices((self.img_paths, self.labels)) print("data type=", type(data)) data = data.map(self.parse_function) data = data.repeat(1000) data = data.shuffle(buffer_size=buffer_size) # 设置self data Batch self.data = data.batch(batch_size) print("self.data type=", type(self.data)) def augment_dataset(self, image, size): distorted_image = tf.image.random_brightness(image, max_delta=63) distorted_image = tf.image.random_contrast(distorted_image, lower=0.2, upper=1.8) # Subtract off the mean and divide by the variance of the pixels. float_image = tf.image.per_image_standardization(distorted_image) return float_image def parse_function(self, filename, label): label_ = tf.one_hot(label, self.num_classes)

#img = tf.read_file(filename)

img = tf.io.read_file(filename) img = tf.image.decode_jpeg(img, channels=3)

img = tf.image.convert_image_dtype(img, dtype=tf.float32)

#img =tf.random_crop(img,[self.image_size[0],self.image_size[1],3])

img=tf.image.random_crop(img, [self.image_size[0], self.image_size[1], 3]) img = tf.image.random_flip_left_right(img) img = self.augment_dataset(img, self.image_size) return img, label_ dataset = ImageData(txtfile, batch_size, num_classes, image_size)

上图中标红色的地方是tensorFlow2.0版本与1.x版本的区别,红色部分属于1.X版本。主要更改在contrib部分,在tensorFlow2.0中已经删除contrib了,其中有维护价值的模块会被移动到别的地方,剩余的都将被删除,这点大家务必注意。

如果您对上面代码有任何不明白的地方请移步之前的文章:【tensorflow速成】Tensorflow图像分类从模型自定义到测试

重要活动,本周有三AI纪念扑克牌发售中,只有不到100套的名额噢,先到先得!

有三AI纪念扑克牌

总结

本文主要介绍了如何在TensorFlow2.0中对自己的数据进行预处理。主要由两种比较好用的方法,第一种是TensorFlow2.0中特有的,即利用Keras高级API对数据进行预处理,第二种是利用Dataset类来处理数据,它和TensorFlow1.X版本基本一致。

本文分享自微信公众号 - 有三AI(yanyousan_ai)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-05-13

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 机器学习神书推荐 Hands on Machine Learning

    本次为大家推荐的是一本机器学习神书英文原版《Hands-On Machine Learning with Scikit-Learn and TensorFlow...

    算法与编程之美
  • 学习TensorFlow中有关特征工程的API

    用TensorFlow框架搭建神经网络已经是大众所知的事情。今天我们来聊一聊如何用TensorFlow 对数据进行特征工程处理。

    代码医生工作室
  • 当微信小程序遇上TensorFlow - 官方文档

    前一段时间为了在微信小程序中使用tensorflow.js,对tfjs-core代码做了一些修改,具体情况请参考我之前写的几篇文档:

    云水木石
  • 主流深度学习框架-MXNet、Caffe、TensorFlow、Torch、Theano

    深度学习是机器学习中的一个研究方向,它基于一种特殊的学习机制。其特点是建立一个多层学习模型,深层级将浅层级的输出作为输入,将数据层层转化,使之越来越抽象。这种分...

    IT大咖说
  • 深度学习哪家强?用数据来一较高下吧

    作者介绍:blmoistawinde,喜欢有意思的数据挖掘分析,本文首发于:https://blog.csdn.net/blmoistawinde

    周萝卜
  • TensorFlow 基础实战

    Tensorflow 是干嘛的,就不过多赘述了,小伙伴们可以访问官网来详细了解 https://www.tensorflow.org/

    周萝卜
  • 一行代码切换TensorFlow与PyTorch,模型训练也能用俩框架

    在早两天开源的 TfPyTh 中,不论是 TensorFlow 还是 PyTorch 计算图,它们都可以包装成一个可微函数,并在另一个框架中高效完成前向与反向传...

    机器之心
  • AI运行环境的搭建

    安装环境为CENTOS6.8操作系统,pip安装tensorflow后提示GLIBC版本过低。考虑到升级GLIBC有一定的风险,所以决定使用编译安装的方式安装t...

    用户2337871
  • 多GPU,具有Tensorflow的多进程

    Tensorflow是实验深度学习算法的绝佳工具。但是要利用深度学习的力量,需要利用计算能力和良好的工程技术。最终需要使用多个GPU,甚至可能需要多个流程才能实...

    代码医生工作室
  • 一行代码切换TensorFlow与PyTorch,模型训练也能用俩框架

    在早两天开源的 TfPyTh 中,不论是 TensorFlow 还是 PyTorch 计算图,它们都可以包装成一个可微函数,并在另一个框架中高效完成前向与反向传...

    代码医生工作室

扫码关注云+社区

领取腾讯云代金券