minix文件系统源码分析之bitmap.c(基于linux1.2.13)

/*
 *  linux/fs/minix/bitmap.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 */

/* bitmap.c contains the code that handles the inode and block bitmaps */

#ifdef MODULE
#include <linux/module.h>
#endif

#include <linux/sched.h>
#include <linux/minix_fs.h>
#include <linux/stat.h>
#include <linux/kernel.h>
#include <linux/string.h>

#include <asm/bitops.h>

static int nibblemap[] = { 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4 };

static unsigned long count_used(struct buffer_head *map[], unsigned numblocks,
  unsigned numbits)
{
  unsigned i, j, end, sum = 0;
  struct buffer_head *bh;
  
  for (i=0; (i<numblocks) && numbits; i++) {
    if (!(bh=map[i])) 
      return(0);
    if (numbits >= (8*BLOCK_SIZE)) { 
      end = BLOCK_SIZE;
      numbits -= 8*BLOCK_SIZE;
    } else {
      int tmp;
      end = numbits >> 3;
      numbits &= 0x7;
      tmp = bh->b_data[end] & ((1<<numbits)-1);
      sum += nibblemap[tmp&0xf] + nibblemap[(tmp>>4)&0xf];
      numbits = 0;
    }  
    for (j=0; j<end; j++)
      sum += nibblemap[bh->b_data[j] & 0xf] 
        + nibblemap[(bh->b_data[j]>>4)&0xf];
  }
  return(sum);
}

void minix_free_block(struct super_block * sb, int block)
{
  struct buffer_head * bh;
  unsigned int bit,zone;

  if (!sb) {
    printk("trying to free block on nonexistent device\n");
    return;
  }
  if (block < sb->u.minix_sb.s_firstdatazone ||
      block >= sb->u.minix_sb.s_nzones) {
    printk("trying to free block not in datazone\n");
    return;
  }
  bh = get_hash_table(sb->s_dev,block,BLOCK_SIZE);
  if (bh)
    bh->b_dirt=0;
  brelse(bh);
  // 算出在文件系统内块数
  zone = block - sb->u.minix_sb.s_firstdatazone + 1;
  // 每个块位图有1024字节,每个字节8个比特,可以管理8192个块
  bit = zone & 8191;
  // 算出块落在哪个块的位图
  zone >>= 13;
  // 取出保存了位图的数据块
  bh = sb->u.minix_sb.s_zmap[zone];
  if (!bh) {
    printk("minix_free_block: nonexistent bitmap buffer\n");
    return;
  }
  // 设置该块为空闲
  if (!clear_bit(bit,bh->b_data))
    printk("free_block (%04x:%d): bit already cleared\n",sb->s_dev,block);
  // 回写
  mark_buffer_dirty(bh, 1);
  return;
}
// 在硬盘中新建一个数据块
int minix_new_block(struct super_block * sb)
{
  struct buffer_head * bh;
  int i,j;

  if (!sb) {
    printk("trying to get new block from nonexistent device\n");
    return 0;
  }
repeat:
  j = 8192;
  // 从数据块位图中找到一个可用的块号 
  for (i=0 ; i<8 ; i++)
    if ((bh=sb->u.minix_sb.s_zmap[i]) != NULL)
      if ((j=find_first_zero_bit(bh->b_data, 8192)) < 8192)
        break;
  if (i>=8 || !bh || j>=8192)
    return 0;
  // 设置该块为已使用
  if (set_bit(j,bh->b_data)) {
    printk("new_block: bit already set");
    goto repeat;
  }
  // 该buffer需要回写
  mark_buffer_dirty(bh, 1);
  // 算出该数据块在硬盘的绝对块号 
  j += i*8192 + sb->u.minix_sb.s_firstdatazone-1;
  if (j < sb->u.minix_sb.s_firstdatazone ||
      j >= sb->u.minix_sb.s_nzones)
    return 0;
  // 获取一个可用的buffer 
  if (!(bh = getblk(sb->s_dev,j,BLOCK_SIZE))) {
    printk("new_block: cannot get block");
    return 0;
  }
  // 置0
  memset(bh->b_data, 0, BLOCK_SIZE);
  // 数据是有效的,即最新的
  bh->b_uptodate = 1;
  // 因为置0了,需要回写到硬盘
  mark_buffer_dirty(bh, 1);
  
  brelse(bh);
  return j;
}

unsigned long minix_count_free_blocks(struct super_block *sb)
{
  return (sb->u.minix_sb.s_nzones - count_used(sb->u.minix_sb.s_zmap,sb->u.minix_sb.s_zmap_blocks,sb->u.minix_sb.s_nzones))
     << sb->u.minix_sb.s_log_zone_size;
}
// 释放inode节点,并删除硬盘的inode节点
void minix_free_inode(struct inode * inode)
{
  struct buffer_head * bh;
  unsigned long ino;

  if (!inode)
    return;
  if (!inode->i_dev) {
    printk("free_inode: inode has no device\n");
    return;
  }
  if (inode->i_count != 1) {
    printk("free_inode: inode has count=%d\n",inode->i_count);
    return;
  }
  if (inode->i_nlink) {
    printk("free_inode: inode has nlink=%d\n",inode->i_nlink);
    return;
  }
  if (!inode->i_sb) {
    printk("free_inode: inode on nonexistent device\n");
    return;
  }
  if (inode->i_ino < 1 || inode->i_ino >= inode->i_sb->u.minix_sb.s_ninodes) {
    printk("free_inode: inode 0 or nonexistent inode\n");
    return;
  }
  ino = inode->i_ino;
  if (!(bh=inode->i_sb->u.minix_sb.s_imap[ino >> 13])) {
    printk("free_inode: nonexistent imap in superblock\n");
    return;
  }
  // 回收inode节点
  clear_inode(inode);
  // 清除位图的已使用标记
  if (!clear_bit(ino & 8191, bh->b_data))
    printk("free_inode: bit %lu already cleared.\n",ino);
  mark_buffer_dirty(bh, 1);
}
// 在inode对应的文件系统对应的硬盘中新增一个inode节点,并在内存申请一个对应的inode结构
struct inode * minix_new_inode(const struct inode * dir)
{
  struct super_block * sb;
  struct inode * inode;
  struct buffer_head * bh;
  int i,j;

  if (!dir || !(inode = get_empty_inode()))
    return NULL;
  // 超级块
  sb = dir->i_sb;
  // 指向所属超级块
  inode->i_sb = sb;
  inode->i_flags = inode->i_sb->s_flags;
  j = 8192;
  // 从inode位图找到空闲项
  for (i=0 ; i<8 ; i++)
    if ((bh = inode->i_sb->u.minix_sb.s_imap[i]) != NULL)
      if ((j=find_first_zero_bit(bh->b_data, 8192)) < 8192)
        break;
  if (!bh || j >= 8192) {
    iput(inode);
    return NULL;
  }
  // 设置为已使用状态
  if (set_bit(j,bh->b_data)) {  /* shouldn't happen */
    printk("new_inode: bit already set");
    iput(inode);
    return NULL;
  }
  // 更新了位图,需要回写
  mark_buffer_dirty(bh, 1);
  j += i*8192;
  if (!j || j >= inode->i_sb->u.minix_sb.s_ninodes) {
    iput(inode);
    return NULL;
  }
  inode->i_count = 1;
  inode->i_nlink = 1;
  inode->i_dev = sb->s_dev;
  inode->i_uid = current->fsuid;
  inode->i_gid = (dir->i_mode & S_ISGID) ? dir->i_gid : current->fsgid;
  inode->i_dirt = 1;
  inode->i_ino = j;
  inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
  inode->i_op = NULL;
  inode->i_blocks = inode->i_blksize = 0;
  // 插入inode列表末尾,表示inode节点已使用
  insert_inode_hash(inode);
  return inode;
}

unsigned long minix_count_free_inodes(struct super_block *sb)
{
  return sb->u.minix_sb.s_ninodes - count_used(sb->u.minix_sb.s_imap,sb->u.minix_sb.s_imap_blocks,sb->u.minix_sb.s_ninodes);
}

原文发布于微信公众号 - 编程杂技(theanarkh)

原文发表时间:2019-07-07

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

扫码关注云+社区

领取腾讯云代金券