转行成为数据分析师的经验分享

我的转行经历

我毕业于上海立信会计学院毕业的税务专业,刚刚毕业的时候还是一枚小财务,后来工作中,身为财务,需要和业务各种斗(si)智(bi)斗(da)勇(zhan),于是在各种机(sheng)缘(zhi)巧(jia)合(xin)下,转行了数据分析。

我的转行经历Part1之税务师事务所

我自己是税务专业毕业,毕业后去了一家小的税务师事务所(合计员工3人),主要做的是各种税务合规、帮企业查缺补漏这样的事情。

大部分分析主要是利用企业外部数据,以及公开数据,模拟税务局分析思路,为企业提供税务局可能分析的角度问题,以此发现企业税法的潜在漏洞,帮助企业及早查缺补漏避免税务稽查。

工作过程中,我发现,对接企业的财务人员时,企业财务人员基本对业务不了解,最多也只是个大体了解,本身没办法发现业务风险点和潜在问题。同时财务人员和业务人员沟通很少,业务财务脱节,极易造成各类问题。

我的转行经历Part2之某东财务税务

后来,我去了某东,负责税务的同时,也帮分析组同事分析具体业务。有一个非常明显的感觉,就是【财务报表不能完全准确地反映企业财务状况】。

1. 财务指标所反映的情况具有相对性,例如预算达成率,超预算未必是坏事,正好达成预算也未必是好事。

2. 财务指标体系不严密,很多业务数据,到达财务时,有大量的缺失和遗漏,导致很多东西财务自己分析不出来。

3. 财务指标的评价标准不统一,很多时候,某个比率或者某个指标,多少是好,多少是差,没有定论。举例说明,某东存货周转天是负数、现金周期也是负数(先收到客户的付款,然后经过30~90天的账期,才结算给商家),问题是这个负数,多大是正常的?这个业内都没有可比数据(阿里有,不给我们),这个数据怎么看?

4. 财务的基础数据不反应实际情况。这个是财务的锅,但是我去业务部门以后,发现不全是这样的。举个简单的例子,车辆作为固定资产,财务账面只有初始成本和折旧这2个数据,而且折旧还是按时间加速折旧的,不能反应实际车辆使用情况。

另外一个感觉就是,财务很多时候,很依赖业务,却又不懂业务。容易被业务耍得团团转。就拿预算工作来说,预算数字是业务报的,执行是业务执行的,超预算或者不足预算是业务那边负责解释的。分析本身也只能很浅的分析,没办法知道业务实质到底和业务同事说的是不是一致的。当然,预算工作中也有各类有意思的事情。比如我们的预算基本只有三种状态:恰好达成、完全不使用预算、远远超出预算。

转行分析

因为之前做财务的时候,有做各类分析工作,后来物流业务那边就把我挖过去了(其实我也想被挖过去,毕竟财务还是挺枯燥的)。到业务这边,发现自己之前财务分析,其实真的很浅。

举几个简单的例子吧,物流体系的货车都是公司自己的,前期财务和物流同事发现车辆损耗严重,车辆折旧年限设定为2年,到期报废。到这里一切都很正常。

后期业务方为了减少报废同时增加员工福利,提出员工购车计划,员工拿低工资,干满2年后,车辆免费(后期改为低价格)转让给员工。神奇的一幕出现了,转让计划的车辆,员工开2年,基本没有什么损耗,但是财务账面折旧计提干净了。换句话说,财务账面认为价值为0的固定资产,实际上和新车差不多。这个时候分析的局限就出现了,购车计划的这些车,司机平时开的都特别小心,生怕车坏了。而平时司机开普通货车,基本上就是横冲直撞,开到极限。车辆使用情况完全不同,财务账面一模一样的东西,到实地一看,价值差距几倍。

这个时候,我就深刻感觉到了财务分析的局限性。财务只是根据账面数据,和极少信息进行分析;而业务中,很多非财务信息、各种难以量化的指标、非结构化的指标,在传递到财务的时候,都丢失了。导致整个财务分析犹如水中望月雾里看花。

再分享一个例子吧,不知道大家有没有开过高速。上高速基本上要交通行费,物流货车基本上走高速,这一点大家都没问题吧。物流分析有个工作就是跟车,就是和货车司机一起跑线路。接下来就是骚操作了。我看到高速入口在前面,司机就是不上高速,全程还超速行驶,接近交警测速仪的时候又降到正常速度。一路上开车开得我一个坐副驾驶的人,心惊胆战的。最神奇的是,某东有时效限制,每次这些司机都能按时到达目的地仓库。某东是报销高速通行费的,我就问司机,“通行费你不报销了啊?”司机说,他们有微信群,要什么时间什么路线的通行费发票都有,都是真发票,还都是别人不要的。到时候按额度报销就可以了。

其实这些问题,从财务角度,都可以解决。如果**能事先知道**不同计划的车辆,损耗程度不同,那么,财务完全有理由按不同的折旧年限进行折旧。如果**能事先知道**很多司机不走高速,拿其他人的车票报销通行费,那么完全可以审核的时候,核对车牌号,就完全可以避免这些问题。

然而,如果真的财务都把这些问题解决掉,业务会变好吗?之前我也和我前领导聊过,一致感觉是,绝对不会,反而会变差。其实原因很简单,如果员工购车计划,按一开始设想的,车辆用到基本报废,再送给员工,那么就不会有员工参加这个计划了;换句话说,其实很多人,是考虑自己爱护车辆,过户的时候还是个新车,才愿意接受低工资的。通行费的问题,之前做过市场调研,因为某东是五险一金全额缴纳的,很多司机不需要,正好高速路费报销有漏洞,司机实际到手的RMB和同行业差不多,所以司机才愿意干活。

数据分析师的工作内容

我理解的数据分析是一个业务支撑性质的工作。数据分析本身是通过分析数据,最终解决商业问题。主要是数据收集(埋点),分析数据之间关系(搭建指标体系),日常分析各个数据,反馈到各个业务条线上,来指导业务工作。个别时候还有专项分析某个场景和数据,为业务提供决策支持。

其实日常工作中,找数据、找逻辑,占了大部分。另外一部分工作是“老板要你分析什么,你就分析什么”,其实工作中,很多时候没有太大主动权,不过别纠结,没办法。

简单的说一下分析过程吧。比如B站用户,看直播过程中,右下角会有一个倒计时小宝箱,点击送银瓜子(按F进入坦克)。这个活动要怎么分析呢?比如一个分析角度,有多少人点击宝箱,那我该怎么分析呢?首先,我要埋点。埋点就是,每个点击的时候,记录谁在什么时候点击(action)了这个动作,有这些数据,后期才能分析。

接下来,我就要看看每天每个时段有多少人点击这个小宝箱,这个就是最简单的数据指标体系的构建。比如,我看到今天投喂辣条的人比较多,我就要看看原因,比如我今天辣条多的原因是,我做了个直播(PS:我想要邮轮~火箭~豪宅~~要打赏~~~拉到最底下可打赏私聊勾搭作者)。

然后呢,我要通过分析结果,反过来促进我的直播。比如大家打赏非常热烈,那么我每天就会非常开心的上B站直播,形成正循环。至于数据报表的配置搭建这部分,基本学了BI和SQL之后,问题都不大,放心吧。

数据分析师的能力要求

1.技能要求

首先要说明一点,技能、工具是为目的服务的,重要的是工具好用,工具不是目的。我们从数据获取,数据预处理,数据分析,结果呈现等几个方面分别来说明。

数据获取:

SQL技能和埋点(埋点主要是互联网行业),还有excel。大多是情况下,数据来源都是数据库或者数据仓库,个别时候需要爬虫(适合收集学习类工作)。内部数据使用SQL(广义概念,含Hive SQL)是一种最简单有效的获取数据的方式。SQL本身入门门槛低,上手快,专业性不是很强。

数据预处理:

以python为例,大部分会用到pandas和sklearn工具包。

数据清洗的环节目标是提高数据质量,为后续的分析工作奠定基础,是高质量数据的最后一道屏障。

数据分析

这一阶段是数据分析工作的核心,首先需要从业务场景的理解出发,基于数据,从趋势、分布中总结规律,分析业务现状,提出业务的改进建议。

结果呈现和结果落地:

这部分包括各种人际交往、沟通能力、各种软技能。这里就不好讲解了。

2.思维要求

这里直接推荐几本书:《谁说菜鸟不会数据分析》《增长黑客》《精益数据分析》《运营之光》

感悟与分享

关于硬技能

这2年python非常火,尤其很多BI工程师和报表工程师,通过学python,再加上数据分析课程,也转行成了偏技术类的数据分析。因此很多人可能会想,学个python。我个人也是自学python的,学下来的感觉是,python只是一个技能,真正有价值的,是**大脑里面的商业模型和分析思路

真的不要把Python和数据分析画上等号。对分析师来说,熟知业务的重要性远比你会一两个工具重要,而论重要性,SQL的重要性比Python重要的多

关于怎么转行

我自己的感受是,重视业务,了解公司怎么赚钱,而不是复制粘贴之前的凭证,只想我把凭证做好,报表做平,就好了。

当然,说起来简单,实际上很多人,应该大部分是工作1~2年的人或者在校生吧,工作以后应该会感觉,很多工作都是重复操作,但是有没办法,重复性工作占用了大量工作时间。所以,我自己一直就觉得,对大家来说,第一点最有可操作性的建议就是***花时间学excel***,如果有时间再加上**VBA**。工作效率提高以后,时间就是自己的了。到时候要学习业务,或者做一些自己的事情,都是OK的。

其次,我之前做审计的经验是,很多公司**系统都不好用**,之前某东的财务系统也不好用,所以当时和IT一起优化了一部分系统功能。后来IT开始上财务机器人,我也协助参与了一些。参与这类项目,基本就全盘了解整个业务每个流程每个节点,再结合一部分审计思维,很容易可以发现问题。关键是,当你有了整体思维, 你看问题的角度就完全不同了。

第三个就是数据分析实践。这些工作中也会遇到。比如,领导有时候会问,为什么收入上升/下降了。这个时候,如果只是业务方随便解释一个原因,然后看一下同比、环比,就解释给领导,一般不够。每个原因都有前因后果,都有内因外因,深入挖问题才可以。(当然一般业务方不一定有时间陪你回答)

最后,有时候选择比努力更重要。命运是抓在自己手里的,想过得好一点,就要刻苦一点。如果你现在感到迷茫,或许你可以静下心来学一样技能,不一定是数据分析,也可以是英语,也可以是PPT,甚至可以是写作等等。多学习多沉淀,你未来的职场生涯的路会相对宽一点,你也能有选择多条路的自信。

Q&A

Q:我是经济学转数据分析,想问跨行业转数据分析,可以结合自己优势在什么方面发展,面试数据分析能力需要到达什么水平?

A:经济学背景可以帮助更全面的理解数据与经济之间的关系。比如B站免费赠送的瓜子与网站日活月活以及直播业务的影响等等

Q:面试数据分析大概能力需要到什么水平?

A:会一点Python和SQL,可以自己获取数据并有效的利用数据分析问题。

Q:数据分析师和算法工程师的区别?

A:数据分析师利用从抽象总结中得到的数据、得到结论,来影响产品和运营的操作。

算法工程师是从数据中学习知识。

Q:数据分析师的代码能力需要到什么水平?

A:会调包就行,理解业务的能力更重要

Q:机器学习和数据分析哪个需要用到统计学?

A:两个都需要,机器学习中会涉及高级统计学内容,数据分析更偏业务。

Q:游戏数据分析师的埋点怎么做?

A:推荐盛大出版的《游戏数据分析》

Q:学历不突出怎么吸引HR的注意?

A:把目标公司研究分析一遍,然后找内推

Q:如何转行数据分析,可操作性比较强的是什么?

A:学习Excel、易上手、性价比高。时间宽裕的同学可以学习VBA,提高工作效率

Q:找工作写简历的项目经验去哪找?

A:打比赛,把比赛的练习项目写进去,或者找公司实习

Q:直播地址?

A:https://www.bilibili.com/video/av61849612 或点击阅读原文进入

本文分享自微信公众号 - Datawhale(Datawhale)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-08-03

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

扫码关注云+社区

领取腾讯云代金券