首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >「多图警告」手撕排序算法 - iOS进阶必备

「多图警告」手撕排序算法 - iOS进阶必备

作者头像
五分钟学算法
发布2019-08-13 11:52:25
8500
发布2019-08-13 11:52:25
举报
文章被收录于专栏:五分钟学算法五分钟学算法

作者 | Lefex

来源 | 超越技术

整理 | 程序员小吴

冒泡排序

冒泡排序是通过比较两个相邻元素的大小实现排序,如果前一个元素大于后一个元素,就交换这两个元素。这样就会让每一趟冒泡都能找到最大一个元素并放到最后。

以 [ 8, 1, 4, 6, 2, 3, 5, 7 ] 为例,对它进行冒泡排序:

代码实现:

+ (NSArray *)bubbleSort:(NSArray *)unsortDatas {
    NSMutableArray *unSortArray = [unsortDatas mutableCopy];
    for (int i = 0; i < unSortArray.count -1 ; i++) {
        BOOL isChange = NO;
        for (int j = 0; j < unSortArray.count - 1 - i; j++) {
            // 比较相邻两个元素的大小,后一个大于前一个就交换
            if ([unSortArray[j] integerValue] > [unSortArray[j+1] integerValue]) {
                NSNumber *data = unSortArray[j+1];
                unSortArray[j+1] = unSortArray[j];
                unSortArray[j] = data;
                isChange = YES;
            }
        }
        if (!isChange) {
            // 如果某次未发生数据交换,说明数据已排序
            break;
        }
    }
    return [unSortArray copy];
}

特点

稳定性:它是指对同样的数据进行排序,会不会改变它的相对位置。比如 [ 1, 3, 2, 4, 2 ] 经过排序后,两个相同的元素 2 位置会不会被交换。冒泡排序是比较相邻两个元素的大小,显然不会破坏稳定性。

空间复杂度:由于整个排序过程是在原数据上进行操作,故为 O(1);

时间复杂度:由于嵌套了 2 层循环,故为 O(n*n);

选择排序

选择排序的思想是,依次从「无序列表」中找到一个最小的元素放到「有序列表」的最后面。以 arr = [ 8, 1, 4, 6, 2, 3, 5, 4 ] 为例,排序开始时把 arr 分为有序列表 A = [ ], 无序列表 B = [ 8, 1, 4, 6, 2, 3, 5, 4 ],依次从 B 中找出最小的元素放到 A 的最后面。这种排序也是逻辑上的分组,实际上不会创建 A 和 B,只是用下标来标记 A 和 B。

以 arr = [ 8, 1, 4, 6, 2, 3, 5, 4 ] 为例,第一次找到最小元素 1 与 8 进行交换,这时有列表 A = [1], 无序列表 B = [8, 4, 6, 2, 3, 5, 4];第二次从 B 中找到最小元素 2,与 B 中的第一个元素进行交换,交换后 A = [1,2],B = [4, 6, 8, 3, 5, 4];就这样不断缩短 B,扩大 A,最终达到有序。

代码实现:

+ (NSArray *)seelectSort:(NSArray *)unsortDatas {
    NSMutableArray *unSortArray = [unsortDatas mutableCopy];
    for (int i = 0; i < unSortArray.count; i++) {
        int mindex = i;
        for (int j = i; j < unSortArray.count; j++) {
            // 找到最小元素的index
            if ([unSortArray[j] integerValue] < [unSortArray[mindex] integerValue]) {
                mindex = j;
            }
        }
        // 交换位置
        NSNumber *data = unSortArray[i];
        unSortArray[i] = unSortArray[mindex];
        unSortArray[mindex] = data;
    }
    return [unSortArray copy];
}

特点

稳定性:排序过程中元素是按顺序进行遍历,相同元素相对位置不会发生变化,故稳定。

空间复杂度:在原序列进行操作,故为 O( 1 );

时间复杂度:需要 2 次循环遍历,故为 O( n * n );

插入排序

在整个排序过程如图所示,以 arr = [ 8, 1, 4, 6, 2, 3, 5, 7] 为例,它会把 arr 分成两组 A = [ 8 ] 和 B = [ 1, 4, 6, 2, 3, 5, 7] ,逐步遍历 B 中元素插入到 A 中,最终构成一个有序序列:

代码实现:

+ (NSArray *)insertionSort:(NSArray *)unsortDatas {
    NSMutableArray *unSortArray = [unsortDatas mutableCopy];
    int preindx = 0;
    NSNumber *current;
    for (int i = 1; i < unSortArray.count; i++) {
        preindx = i - 1;
        // 必须记录这个元素,不然会被覆盖掉
        current = unSortArray[i];
        // 逆序遍历已经排序好的数组

        // 当前元素小于排序好的元素,就移动到下一个位置
        while (preindx >= 0 && [current integerValue] < [unSortArray[preindx] integerValue] ) {
            // 元素向后移动
            unSortArray[preindx+1] = unSortArray[preindx];
            preindx -= 1;
        }
        // 找到合适的位置,把当前的元素插入
        unSortArray[preindx+1] = current;
    }
    return [unSortArray copy];
}

特点

稳定性:它是从后往前遍历已排序好的序列,相同元素不会改变位置,故为稳定排序; 空间复杂度:它是在原序列进行排序,故为 O ( 1 );

时间复杂度:排序的过程中,首先要遍历所有的元素,然后在已排序序列中找到合适的位置并插入。共需要 2 层循环,故为 O ( n * n );

希尔排序

希尔排序,它是由 D.L.Shell 于1959 年提出而得名。根据它的名字很难想象算法的核心思想。[ 所以只能死记硬背了,面试官问:希尔排序的思想是什么?]。它的核心思想是把一个序列分组,对分组后的内容进行插入排序,这里的分组只是逻辑上的分组,不会重新开辟存储空间。它其实是插入排序的优化版,插入排序对基本有序的序列性能好,希尔排序利用这一特性把原序列分组,对每个分组进行排序,逐步完成排序。

以 arr = [ 8, 1, 4, 6, 2, 3, 5, 7 ] 为例,通过 floor(8/2) 来分为 4 组,8 表示数组中元素的个数。分完组后,对组内元素进行插入排序。

「 第1次分组 」

「 利用第 1 次分组结果进行第 2 次分组 」

「 利用第 2 次分组结果进行最后一次分组 」

代码实现:

+ (NSArray *)shellSort:(NSArray *)unsortDatas {
    NSMutableArray *unSortArray = [unsortDatas mutableCopy];
    // len = 9
    int len = (int)unSortArray.count;
    // floor 向下取整,所以 gap的值为:4,2,1
    for (int gap = floor(len / 2); gap > 0; gap = floor(gap/2)) {
        // i=4;i<9;i++ (4,5,6,7,8)
        for (int i = gap; i < len; i++) {
            // j=0,1,2,3,4
            // [0]-[4] [1]-[5] [2]-[6] [3]-[7] [4]-[8]
            for (int j = i - gap; j >= 0 && [unSortArray[j] integerValue] > [unSortArray[j+gap] integerValue]; j-=gap) {
                // 交换位置
                NSNumber *temp = unSortArray[j];
                unSortArray[j] = unSortArray[gap+j];
                unSortArray[gap+j] = temp;
            }
        }
    }
    return [unSortArray copy];
}

特点

稳定性:它可能会把相同元素分到不同的组中,那么两个相同的元素就有可能调换相对位置,故不稳定。

空间复杂度:由于整个排序过程是在原数据上进行操作,故为 O(1);

时间复杂度:希尔排序的时间复杂度与增量序列的选取有关,例如希尔增量时间复杂度为O(n²),而Hibbard增量的希尔排序的时间复杂度为O(log n的3/2),希尔排序时间复杂度的下界是n*log2n

快速排序

快速排序的核心思想是对待排序序列通过一个「支点」(支点就是序列中的一个元素,别把它想的太高大上)进行拆分,使得左边的数据小于支点,右边的数据大于支点。然后把左边和右边再做一次递归,直到递归结束。支点的选择也是一门大学问,我们以 (左边index + 右边index)/ 2 来选择支点。

以 arr = [ 8, 1, 4, 6, 2, 3, 5, 7 ] 为例,选择一个支点, index= (L+R)/2 = (0+7)/2=3, 支点的值 pivot = arr[index] = arr[3] = 6,接下来需要把 arr 中小于 6 的移到左边,大于 6 的移到右边。

快速排序使用一个高效的方法做数据拆分。

用一个指向左边的游标 i,和指向右边的游标 j,逐渐移动这两个游标,直到找到 arr[i] > 6 和 arr[j] < 6, 停止移动游标,交换 arr[i] 和 arr[j],交换完后 i++,j--(对下一个元素进行比较),直到 i>=j,停止移动。

图中的 L,R 是指快速排序开始时序列的起始和结束索引,在一趟快速排序中,它们的值不会发生改变,直到下一趟排序时才会改变。

一趟快速排序完成后,分别对小于6和大于等于6的部分进行快速排序,递归就好了。对 [ 5, 1, 4, 3, 2 ] 进行一趟快速排序。

代码实现:

/**
 快速排序

 @param unSortArray 待排序序列
 @param lindex 待排序序列左边的index
 @param rIndex 待排序序列右边的index
 @return 排序结果
 */
+ (NSArray *)quickSort:(NSMutableArray *)unSortArray leftIndex:(NSInteger)lindex rightIndex:(NSInteger)rIndex {
    NSInteger i = lindex; NSInteger j = rIndex;
    // 取中间的值作为一个支点
    NSNumber *pivot = unSortArray[(lindex + rIndex) / 2];
    while (i <= j) {
        // 向左移动,直到找打大于支点的元素
        while ([unSortArray[i] integerValue] < [pivot integerValue]) {
            i++;
        }
        // 向右移动,直到找到小于支点的元素
        while ([unSortArray[j] integerValue] > [pivot integerValue]) {
            j--;
        }
        // 交换两个元素,让左边的大于支点,右边的小于支点
        if (i <= j) {
            // 如果 i== j,交换个啥?
            if (i != j) {
                NSNumber *temp = unSortArray[i];
                unSortArray[i] = unSortArray[j];
                unSortArray[j] = temp; }
            i++;
            j--;
        }
    }
    // 递归左边,进行快速排序
    if (lindex < j) {
        [self quickSort:unSortArray leftIndex:lindex rightIndex:j];
    }
    // 递归右边,进行快速排序
    if (i < rIndex) {
        [self quickSort:unSortArray leftIndex:i rightIndex:rIndex];
    }
    return [unSortArray copy];
}

归并排序

归并排序,采用分治思想,先把待排序序列拆分成一个个子序列,直到子序列只有一个元素,停止拆分,然后对每个子序列进行边排序边合并。其实,从名字「归并」可以看出一丝「拆、合」的意思(妄加猜测)。

以 arr = [ 8, 1, 4, 6, 2, 3, 5, 7 ] 为例,排序需要分两步:

a、「」,以 length/2 拆分为 A = [ 8, 1, 4, 6 ] ,B = [ 2, 3, 5, 7 ],继续对 A 和 B 进行拆分,A1 = [ 8, 1 ] 、A2 = [ 4, 6 ]、B1 = [ 2, 3 ]、B2 = [ 5, 7 ],继续拆分,直到只有一个元素,A11 = [ 8 ] , A12= [ 1 ] 、A21 = [ 4 ]、A22 = [ 6 ]、B11 = [ 2 ]、B12 = [ 3 ]、B21 = [ 5 ]、B22 = [ 7 ]。

b、「」,对单个元素的序列进行合并,A11和A12合并为[ 1, 8 ], A21 和 A22 合并为 [ 4, 6 ],等等。在合并的过程中也需要排序。

代码实现:

+ (NSArray *)mergeSort:(NSArray *)unSortArray {
    NSInteger len = unSortArray.count;
    // 递归终止条件
    if (len <= 1) {
        return unSortArray;
    }
    NSInteger mid = len / 2;
    // 对左半部分进行拆分
    NSArray *lList = [self mergeSort:[unSortArray subarrayWithRange:NSMakeRange(0, mid)]];
    // 对右半部分进行拆分
    NSArray *rList = [self mergeSort:[unSortArray subarrayWithRange:NSMakeRange(mid, len-mid)]];
    // 递归结束后执行下面的语句
    NSInteger lIndex = 0;
    NSInteger rIndex = 0;
    // 进行合并
    NSMutableArray *results = [NSMutableArray array];
    while (lIndex < lList.count && rIndex < rList.count) {
        if ([lList[lIndex] integerValue] < [rList[rIndex] integerValue]) {
            [results addObject:lList[lIndex]];
            lIndex += 1;
        } else {
            [results addObject:rList[rIndex]];
            rIndex += 1;
        }
    }
    // 把左边剩余元素加到排序结果中
    if (lIndex < lList.count) {
        [results addObjectsFromArray:[lList subarrayWithRange:NSMakeRange(lIndex, lList.count-lIndex)]];
    }
    // 把右边剩余元素加到排序结果中
    if (rIndex < rList.count) {
        [results addObjectsFromArray:[rList subarrayWithRange:NSMakeRange(rIndex, rList.count-rIndex)]];
    }
    return results;
}

特点

稳定性:在元素拆分的时候,虽然相同元素可能被分到不同的组中,但是合并的时候相同元素相对位置不会发生变化,故稳定。

空间复杂度:需要用到一个数组保存排序结果,也就是合并的时候,需要开辟空间来存储排序结果,故为 O ( n );

时间复杂度:最好最坏都为 O(nlogn);

计数排序

前面所讲的 6 种排序都是基于「比较」的思想,总是在比较两个元素的大小,然后交换位置。

现在来换个“口味”,来看看计数排序。

计数排序的核心思想是把一个无序序列 A 转换成另一个有序序列 B,从 B 中逐个“取出”所有元素,取出的元素即为有序序列「没看明白,不急,后面来张图就搞明白了」。这种算法比快速排序还要快「特定条件下」,它适用于待排序序列中元素的取值范围比较小。比如对某大型公司员工按年龄排序,年龄的取值范围很小,大约在(10-100)之间。

对数组 arr = [ 8, 1, 4, 6, 2, 3, 5, 4 ] 进行排序,使用计数排序需要找到与其对应的一个有序序列,可以使用数组的下标与 arr 做一个映射「数组的下标恰好是有序的」。

遍历 arr,把 arr 中的元素放到 counArr 中,counArr 的大小是由 arr 中最大元素和最小元素决定的。

图中有个技巧,为了让 countArr 尽可能地小,countArr 的长度使用了 arr 中的最大值 max - arr 中的最小值 min + 1 (max - min + 1),arr[i] - min 恰好是 countArr 的下标。countArr 中记录了某个值出现的次数,比如 8 出现过 1 次,则在 countArr 中的值为 1;4 出现过 2 次,则在 countArr 中的值为 2。

代码实现:

+ (NSArray *)countingSort:(NSArray *)datas {
    // 1.找出数组中最大数和最小数
    NSNumber *max = [datas firstObject];
    NSNumber *min = [datas firstObject];
    for (int i = 0; i < datas.count; i++) {
        NSNumber *item = datas[i];
        if ([item integerValue] > [max integerValue]) {
            max = item;
        }
        if ([item integerValue] < [min integerValue]) {
            min = item;
        }
    }
    // 2.创建一个数组 countArr 来保存 datas 中元素出现的个数
    NSInteger sub = [max integerValue] - [min integerValue] + 1;
    NSMutableArray *countArr = [NSMutableArray arrayWithCapacity:sub];
    for (int i = 0; i < sub; i++) {
        [countArr addObject:@(0)];
    }
    // 3.把 datas 转换成 countArr,使用 datas[i] 与 countArr 的下标对应起来
    for (int i = 0; i < datas.count; i++) {
        NSNumber *aData = datas[i];
        NSInteger index = [aData integerValue] - [min integerValue];
        countArr[index] = @([countArr[index] integerValue] + 1);
    }
    // 4.从countArr中输出结果
    NSMutableArray *resultArr = [NSMutableArray arrayWithCapacity:datas.count];
    for (int i = 0; i < countArr.count; i++) {
        NSInteger count = [countArr[i] integerValue];
        while (count > 0) {
            [resultArr addObject:@(i + [min integerValue])];
            count -= 1;
        }
    }
    return [resultArr copy];
}

特点

稳定性:在元素往 countArr 中记录时按顺序遍历,从 countArr 中取出元素也是按顺序取出,相同元素相对位置不会发生变化,故稳定。

空间复杂度:需要额外申请空间,复杂度为“桶”的个数,故为 O ( k ), k 为“桶”的个数,也就是 countArr 的长度;

时间复杂度:最好最坏都为 O(n+k), k 为“桶”的个数,也就是 countArr 的长度;

桶排序

以 arr = [ 8, 1, 4, 6, 2, 3, 5, 7 ] 为例,排序前需要确定桶的个数,和确定桶中元素的取值范围:

代码实现:

+ (NSArray *)bucketSort:(NSArray *)datas {
    // 1.找出数组中最大数和最小数
    NSNumber *max = [datas firstObject];
    NSNumber *min = [datas firstObject];
    for (int i = 0; i < datas.count; i++) {
        NSNumber *item = datas[i];
        if ([item integerValue] > [max integerValue]) {
            max = item;
        }
        if ([item integerValue] < [min integerValue]) {
            min = item;
        }
    }
    // 2.创建桶,桶的个数为 3
    int maxBucket = 3;
    NSMutableArray *buckets = [NSMutableArray arrayWithCapacity:maxBucket];
    for (int i = 0; i < maxBucket; i++) {
        NSMutableArray *aBucket = [NSMutableArray array];
        [buckets addObject:aBucket];
    }
    // 3.把数据分配到桶中,桶中的数据是有序的
    // a.计算桶中数据的平均值,这样分组数据的时候会把数据放到对应的桶中
    float space = ([max integerValue] - [min integerValue] + 1) / (maxBucket*1.0);
    for (int i = 0; i < datas.count; i++) {
        // b.根据数据值计算它在桶中的位置
        int index = floor(([datas[i] integerValue] - [min integerValue]) / space);
        NSMutableArray *bucket = buckets[index];
        int maxCount = (int)bucket.count;
        NSInteger minIndex = 0;
        for (int j = maxCount - 1; j >= 0; j--) {
            if ([datas[i] integerValue] > [bucket[j] integerValue]) {
                minIndex = j+1;
                break;
            }
        }
        [bucket insertObject:datas[i] atIndex:minIndex];
    }
    // 4.把桶中的数据重新组装起来
    NSMutableArray *results = [NSMutableArray array];
    [buckets enumerateObjectsUsingBlock:^(NSArray *obj, NSUInteger idx, BOOL * _Nonnull stop) {
        [results addObjectsFromArray:obj];
    }];

    return results;
}

特点

稳定性:在元素拆分的时候,相同元素会被分到同一组中,合并的时候也是按顺序合并,故稳定。

空间复杂度:桶的个数加元素的个数,为 O ( n + k );

时间复杂度:最好为 O( n + k ),最坏为 O(n * n);

基数排序

基数排序是从待排序序列找出可以作为排序的「关键字」,按照「关键字」进行多次排序,最终得到有序序列。比如对 100 以内的序列 arr = [ 3, 9, 489, 1, 5, 10, 2, 7, 6, 204 ]进行排序,排序关键字为「个位数」、「十位数」和「百位数」这 3 个关键字,分别对这 3 个关键字进行排序,最终得到一个有序序列。

以 arr = [ 3, 9, 489, 1, 5, 10, 2, 7, 6, 204 ] 为例,最大为 3 位数,分别对个、十、百位进行排序,最终得到的序列就是有序序列。可以把 arr 看成 [ 003, 009, 489, 001, 005, 010, 002, 007, 006, 204 ],这样理解起来比较简单。

数字的取值范围为 0-9,故可以分为 10 个桶。

代码实现:

+ (NSArray *)radixSort:(NSArray *)datas {
    NSMutableArray *tempDatas;
    NSInteger maxValue = 0;
    int maxDigit = 0;
    int level = 0;
    do {
        // 1.创建10个桶
        NSMutableArray *buckets = [NSMutableArray array];
        for (int i = 0; i < 10; i++) {
            NSMutableArray *array = [NSMutableArray array];
            [buckets addObject:array];
        }
        // 2.把数保存到桶中
        for (int i = 0; i < datas.count; i++) {
            NSInteger value = [datas[i] integerValue];
            // 求一个数的多次方
            int xx = (level < 1 ? 1 : (pow(10, level)));
            // 求个位数、十位数....
            int mod = value / xx  % 10;
            [buckets[mod] addObject:datas[i]];
            // 求最大数为了计算最大数
            if (maxDigit == 0) {
                if (value > maxValue) {
                    maxValue = value;
                }
            }
        }
        // 3.把桶中的数据重新合并
        tempDatas = [NSMutableArray array];
        for (int i = 0; i < 10; i++) {
            NSMutableArray *aBucket = buckets[i];
            [tempDatas addObjectsFromArray:aBucket];

        }
        // 4.求出数组中最大数的位数, 只需计算一次
        if (maxDigit == 0) {
            while(maxValue > 0){
                maxValue = maxValue / 10;
                maxDigit++;
            }
        }
        // 5.继续下一轮排序
        datas = tempDatas;
        level += 1;

    } while (level < maxDigit);

    return tempDatas;
}

特点

稳定性:在元素拆分的时候,相同元素会被分到同一组中,合并的时候也是按顺序合并,故稳定。

空间复杂度:O ( n + k );

时间复杂度:最好最坏都为 O( n * k );

总结

以上就是 iOS 中的十大经典排序算法,仔细阅读一番理解之后,能助你在 iOS 的算法笔试环节一臂之力。

ps:我在前几年开源了一个项目:在Object-C中学习数据结构与算法之排序算法,如果你是 iOS 开发者,可以在 GitHub 上 https://github.com/MisterBooo/Play-With-Sort-OC 获取可调试运行的源码。


本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-08-10,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 五分钟学算法 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档