前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >详解准确率、精确率、召回率、F1值等评价指标的含义

详解准确率、精确率、召回率、F1值等评价指标的含义

作者头像
小一
发布2019-08-14 15:59:15
32.3K0
发布2019-08-14 15:59:15
举报
文章被收录于专栏:谓之小一谓之小一
机器学习问题之中,通常需要建立模型来解决具体问题,但对于模型的好坏,也就是模型的泛化能力,如何进行评估呢?

很简单,我们可以定一些评价指标,来度量模型的优劣。比如准确率、精确率、召回率、F1值、ROC、AUC等指标,但是你清楚这些指标的具体含义吗?下面我们一起来看看吧。

1.混淆矩阵

介绍各个指标之前,我们先来了解一下混淆矩阵。假如现在有一个二分类问题,那么预测结果和实际结果两两结合会出现如下四种情况。

由于用数字1、0表示不太方便阅读,我们转换一下,用T(True)代表正确F(False)代表错误P(Positive)代表1N(Negative)代表0先看预测结果(P|N),然后再针对实际结果对比预测结果,给出判断结果(T|F)。按照上面逻辑,重新分配后为

TP、FP、FN、TN可以理解为

  • TP:预测为1,实际为1,预测正确。
  • FP:预测为1,实际为0,预测错误。
  • FN:预测为0,实际为1,预测错误。
  • TN:预测为0,实际为0,预测正确。

2.准确率

首先给出准确率(Accuracy)的定义,即预测正确的结果占总样本的百分比,表达式为

虽然准确率能够判断总的正确率,但是在样本不均衡的情况下,并不能作为很好的指标来衡量结果。

比如在样本集中,正样本有90个,负样本有10个,样本是严重的不均衡。对于这种情况,我们只需要将全部样本预测为正样本,就能得到90%的准确率,但是完全没有意义。对于新数据,完全体现不出准确率。因此,在样本不平衡的情况下,得到的高准确率没有任何意义,此时准确率就会失效。所以,我们需要寻找新的指标来评价模型的优劣。

3.精确率

精确率(Precision)是针对预测结果而言的,其含义是在被所有预测为正的样本中实际为正样本的概率,表达式为

精确率和准确率看上去有些类似,但是是两个完全不同的概念。精确率代表对正样本结果中的预测准确程度,准确率则代表整体的预测准确程度,包括正样本和负样本。

4.召回率

召回率(Recall)是针对原样本而言的,其含义是在实际为正的样本中被预测为正样本的概率,表达式为

下面我们通过一个简单例子来看看精确率和召回率。假设一共有10篇文章,里面4篇是你要找的。根据你的算法模型,你找到了5篇,但实际上在这5篇之中,只有3篇是你真正要找的。

那么算法的精确率是3/5=60%,也就是你找的这5篇,有3篇是真正对的。算法的召回率是3/4=75%,也就是需要找的4篇文章,你找到了其中三篇。以精确率还是以召回率作为评价指标,需要根据具体问题而定。

5.F1分数

精确率和召回率又被叫做查准率和查全率,可以通过P-R图进行表示

如何理解P-R(精确率-召回率)曲线呢?或者说这些曲线是根据什么变化呢?

以逻辑回归举例,其输出值是0-1之间的数字。因此,如果我们想要判断用户的好坏,那么就必须定一个阈值。比如大于0.5指定为好用户,小于0.5指定为坏用户,然后就可以得到相应的精确率和召回率。但问题是,这个阈值是我们随便定义的,并不知道这个阈值是否符合我们的要求。因此为了寻找一个合适的阈值,我们就需要遍历0-1之间所有的阈值,而每个阈值都对应一个精确率和召回率,从而就能够得到上述曲线。

根据上述的P-R曲线,怎么判断最好的阈值点呢?首先我们先明确目标,我们希望精确率和召回率都很高,但实际上是矛盾的,上述两个指标是矛盾体,无法做到双高。因此,选择合适的阈值点,就需要根据实际问题需求,比如我们想要很高的精确率,就要牺牲掉一些召回率。想要得到很高的召回率,就要牺牲掉一些精准率。但通常情况下,我们可以根据他们之间的平衡点,定义一个新的指标:F1分数(F1-Score)。F1分数同时考虑精确率和召回率,让两者同时达到最高,取得平衡。F1分数表达式为

上图P-R曲线中,平衡点就是F1值的分数。

6.Roc、AUC曲线

正式介绍ROC和AUC之前,还需要再介绍两个指标,真正率(TPR)和假正率(FPR)

  • 真正率(TPR) = 灵敏度(Sensitivity) = TP/(TP+FN)
  • 假正率(FPR) = 1-特异度(Specificity) = FP/(FP+TN)

TPR和FPR分别是基于实际表现1、0出发的,也就是说在实际的正样本和负样本中来观察相关概率问题。因此,无论样本是否均衡,都不会被影响。

继续用上面例子,总样本中有90%的正样本,10%的负样本。TPR能够得到90%正样本中有多少是被真正覆盖的,而与那10%无关。同理FPR能够得到10%负样本中有多少是被覆盖的,而与那90%无关。因此我们从实际表现的各个结果出发,就能避免样本不平衡的问题,这就是为什么用TPR和FPR作为ROC、AUC指标的原因。

6.1 ROC

ROC曲线图如下所示,其中横坐标为假正率(FPR),纵坐标为真正率(TPR)。

与前面的P-R曲线类似,ROC曲线也是通过遍历所有阈值来绘制曲线的。如果我们不断的遍历所有阈值,预测的正样本和负样本是在不断变化的,相应的ROC曲线TPR和FPR也会沿着曲线滑动。

同时,我们也会思考,如何判断ROC曲线的好坏呢?我们来看,FPR表示模型虚报的程度,TPR表示模型预测覆盖的程度。理所当然的,我们希望虚报的越少越好,覆盖的越多越好。所以TPR越高,同时FPR越低,也就是ROC曲线越陡,那么模型的性能也就越好。

最后,我们来看一下,不论样本比例如何改变,ROC曲线都没有影响,也就是ROC曲线无视样本间的不平衡问题。

6.2 AUC

AUC(Area Under Curve)表示ROC中曲线下的面积,用于判断模型的优劣。如ROC曲线所示,连接对角线的面积刚好是0.5,对角线的含义也就是随机判断预测结果,正负样本覆盖应该都是50%。另外,ROC曲线越陡越好,所以理想值是1,即正方形。所以AUC的值一般是介于0.5和1之间的。AUC评判标准可参考如下

  • 0.5-0.7:效果较低。
  • 0.7-0.85:效果一般。
  • 0.85-0.95:效果很好。
  • 0.95-1:效果非常好。
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-01-31,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 谓之小一 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1.混淆矩阵
  • 2.准确率
  • 3.精确率
  • 4.召回率
  • 5.F1分数
  • 6.Roc、AUC曲线
    • 6.1 ROC
      • 6.2 AUC
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档