前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >从小白到大师,这里有一份Pandas入门指南

从小白到大师,这里有一份Pandas入门指南

作者头像
代码医生工作室
发布2019-08-15 18:11:10
1.7K0
发布2019-08-15 18:11:10
举报

选自Medium

作者:Rudolf Höhn

机器之心编译

参与:李诗萌、张倩

在本文中,作者从 Pandas 的简介开始,一步一步讲解了 Pandas 的发展现状、内存优化等问题。这是一篇最佳实践教程,既适合用过 Pandas 的读者,也适合没用过但想要上手的小白。

通过本文,你将有望发现一到多种用 pandas 编码的新方法。

本文包括以下内容:

  • Pandas 发展现状;
  • 内存优化;
  • 索引;
  • 方法链;
  • 随机提示。

在阅读本文时,我建议你阅读每个你不了解的函数的文档字符串(docstrings)。简单的 Google 搜索和几秒钟 Pandas 文档的阅读,都会使你的阅读体验更加愉快。

Pandas 的定义和现状

什么是 Pandas?

Pandas 是一个「开源的、有 BSD 开源协议的库,它为 Python 编程语言提供了高性能、易于使用的数据架构以及数据分析工具」。总之,它提供了被称为 DataFrame 和 Series(对那些使用 Panel 的人来说,它们已经被弃用了)的数据抽象,通过管理索引来快速访问数据、执行分析和转换运算,甚至可以绘图(用 matplotlib 后端)。

Pandas 的当前最新版本是 v0.25.0 (https://github.com/pandas-dev/pandas/releases/tag/v0.25.0)

Pandas 正在逐步升级到 1.0 版,而为了达到这一目的,它改变了很多人们习以为常的细节。Pandas 的核心开发者之一 Marc Garcia 发表了一段非常有趣的演讲——「走向 Pandas 1.0」。

演讲链接:https://www.youtube.com/watch?v=hK6o_TDXXN8

用一句话来总结,Pandas v1.0 主要改善了稳定性(如时间序列)并删除了未使用的代码库(如 SparseDataFrame)。

数据

让我们开始吧!选择「1985 到 2016 年间每个国家的自杀率」作为玩具数据集。这个数据集足够简单,但也足以让你上手 Pandas。

数据集链接:https://www.kaggle.com/russellyates88/suicide-rates-overview-1985-to-2016

在深入研究代码之前,如果你想重现结果,要先执行下面的代码准备数据,确保列名和类型是正确的。

import pandas as pd
import numpy as np
import os
# to download https://www.kaggle.com/russellyates88/suicide-rates-overview-1985-to-2016

data_path = 'path/to/folder/'
df = (pd.read_csv(filepath_or_buffer=os.path.join(data_path, 'master.csv')) 
.rename(columns={'suicides/100k pop' : 'suicides_per_100k', ' gdp_for_year ($) ' : 'gdp_year',  'gdp_per_capita ($)' : 'gdp_capita', 'country-year' : 'country_year'}) 
.assign(gdp_year=lambda _df: _df['gdp_year'].str
.replace(',','').astype(np.int64)) )

提示:如果你读取了一个大文件,在 read_csv(https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html)中参数设定为 chunksize=N,这会返回一个可以输出 DataFrame 对象的迭代器。

这里有一些关于这个数据集的描述:

>>> df.columnsIndex(['country', 'year', 'sex', 'age', 'suicides_no', 'population', 'suicides_per_100k', 'country_year', 'HDI for year', 'gdp_year', 'gdp_capita', 'generation'], dtype='object')

这里有 101 个国家、年份从 1985 到 2016、两种性别、六个年代以及六个年龄组。有一些获得这些信息的方法:

可以用 unique() 和 nunique() 获取列内唯一的值(或唯一值的数量);

>>> df['generation'].unique()
array(['Generation X', 'Silent', 'G.I. Generation', 'Boomers', 'Millenials', 'Generation Z'], dtype=object)
>>> df['country'].nunique()
101

可以用 describe() 输出每一列不同的统计数据(例如最小值、最大值、平均值、总数等),如果指定 include='all',会针对每一列目标输出唯一元素的数量和出现最多元素的数量;

可以用 head() 和 tail() 来可视化数据框的一小部分。

通过这些方法,你可以迅速了解正在分析的表格文件。

内存优化

在处理数据之前,了解数据并为数据框的每一列选择合适的类型是很重要的一步。

在内部,Pandas 将数据框存储为不同类型的 numpy 数组(比如一个 float64 矩阵,一个 int32 矩阵)。

有两种可以大幅降低内存消耗的方法。

import pandas as pd

def mem_usage(df: pd.DataFrame) -> str: 
"""This method styles the memory usage of a DataFrame to be readable as MB. Parameters ---------- df: pd.DataFrame Data frame to measure. Returns ------- str Complete memory usage as a string formatted for MB. """ 
    return f'{df.memory_usage(deep=True).sum() / 1024 ** 2 : 3.2f} MB'

def convert_df(df: pd.DataFrame, deep_copy: bool = True) -> pd.DataFrame: 
"""Automatically converts columns that are worth stored as ``categorical`` dtype. Parameters ---------- df: pd.DataFrame Data frame to convert. deep_copy: bool Whether or not to perform a deep copy of the original data frame. Returns ------- pd.DataFrame Optimized copy of the input data frame. """ 
    return df.copy(deep=deep_copy).astype({ col: 'category' for col in df.columns if df[col].nunique() / df[col].shape[0] < 0.5})

Pandas 提出了一种叫做 memory_usage() 的方法,这种方法可以分析数据框的内存消耗。在代码中,指定 deep=True 来确保考虑到了实际的系统使用情况。

memory_usage():https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.memory_usage.html

了解列的类型(https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes)很重要。它可以通过两种简单的方法节省高达 90% 的内存使用:

  • 了解数据框使用的类型;
  • 了解数据框可以使用哪种类型来减少内存的使用(例如,price 这一列值在 0 到 59 之间,只带有一位小数,使用 float64 类型可能会产生不必要的内存开销)

除了降低数值类型的大小(用 int32 而不是 int64)外,Pandas 还提出了分类类型:https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html

如果你是用 R 语言的开发人员,你可能觉得它和 factor 类型是一样的。

这种分类类型允许用索引替换重复值,还可以把实际值存在其他位置。教科书中的例子是国家。和多次存储相同的字符串「瑞士」或「波兰」比起来,为什么不简单地用 0 和 1 替换它们,并存储在字典中呢?

categorical_dict = {0: 'Switzerland', 1: 'Poland'}

Pandas 做了几乎相同的工作,同时添加了所有的方法,可以实际使用这种类型,并且仍然能够显示国家的名称。

回到 convert_df() 方法,如果这一列中的唯一值小于 50%,它会自动将列类型转换成 category。这个数是任意的,但是因为数据框中类型的转换意味着在 numpy 数组间移动数据,因此我们得到的必须比失去的多。

接下来看看数据中会发生什么。

>>> mem_usage(df)
10.28 MB
>>> mem_usage(df.set_index(['country', 'year', 'sex', 'age']))
5.00 MB
>>> mem_usage(convert_df(df))
1.40 MB
>>> mem_usage(convert_df(df.set_index(['country', 'year', 'sex', 'age'])))
1.40 MB

通过使用「智能」转换器,数据框使用的内存几乎减少了 10 倍(准确地说是 7.34 倍)。

索引

Pandas 是强大的,但也需要付出一些代价。当你加载 DataFrame 时,它会创建索引并将数据存储在 numpy 数组中。这是什么意思?一旦加载了数据框,只要正确管理索引,就可以快速地访问数据。

访问数据的方法主要有两种,分别是通过索引和查询访问。根据具体情况,你只能选择其中一种。但在大多数情况中,索引(和多索引)都是最好的选择。我们来看下面的例子:

>>> %%time
>>> df.query('country == "Albania" and year == 1987 and sex == "male" and age == "25-34 years"')
CPU times: user 7.27 ms, sys: 751 µs, total: 8.02 ms
# ==================
>>> %%time
>>> mi_df.loc['Albania', 1987, 'male', '25-34 years']
CPU times: user 459 µs, sys: 1 µs, total: 460 µs

什么?加速 20 倍?

你要问自己了,创建这个多索引要多长时间?

%%time
mi_df = df.set_index(['country', 'year', 'sex', 'age'])
CPU times: user 10.8 ms, sys: 2.2 ms, total: 13 ms

通过查询访问数据的时间是 1.5 倍。如果你只想检索一次数据(这种情况很少发生),查询是正确的方法。否则,你一定要坚持用索引,CPU 会为此感激你的。

.set_index(drop=False) 允许不删除用作新索引的列。

.loc[]/.iloc[] 方法可以很好地读取数据框,但无法修改数据框。如果需要手动构建(比如使用循环),那就要考虑其他的数据结构了(比如字典、列表等),在准备好所有数据后,创建 DataFrame。否则,对于 DataFrame 中的每一个新行,Pandas 都会更新索引,这可不是简单的哈希映射。

>>> (pd.DataFrame({'a':range(2), 'b': range(2)}, index=['a', 'a']) .loc['a']) 
  a b
a 0 0
a 1 1

因此,未排序的索引可以降低性能。为了检查索引是否已经排序并对它排序,主要有两种方法:

%%time
>>> mi_df.sort_index()
CPU times: user 34.8 ms, sys: 1.63 ms, total: 36.5 ms
>>> mi_df.index.is_monotonicTrue

更多详情请参阅:

  • Pandas 高级索引用户指南:https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html;
  • Pandas 库中的索引代码:https://github.com/pandas-dev/pandas/blob/master/pandas/core/indexing.py。

方法链

使用 DataFrame 的方法链是链接多个返回 DataFrame 方法的行为,因此它们都是来自 DataFrame 类的方法。在现在的 Pandas 版本中,使用方法链是为了不存储中间变量并避免出现如下情况:

import numpy as np
import pandas as pd
df = pd.DataFrame({'a_column': [1, -999, -999], 'powerless_column': [2, 3, 4], 'int_column': [1, 1, -1]}) 
df['a_column'] = df['a_column'].replace(-999, np.nan) 
df['power_column'] = df['powerless_column'] ** 2 
df['real_column'] = df['int_column'].astype(np.float64) 
df = df.apply(lambda _df: _df.replace(4, np.nan)) 
df = df.dropna(how='all')

用下面的链替换:

df = (pd.DataFrame({'a_column': [1, -999, -999], 
'powerless_column': [2, 3, 4], 
'int_column': [1, 1, -1]}) 
.assign(a_column=lambda _df: _df['a_column'].replace(-999, np.nan)) 
.assign(power_column=lambda _df: _df['powerless_column'] ** 2) 
.assign(real_column=lambda _df: _df['int_column'].astype(np.float64)) 
.apply(lambda _df: _df.replace(4, np.nan)) 
.dropna(how='all') )

说实话,第二段代码更漂亮也更简洁。

方法链的工具箱是由不同的方法(比如 apply、assign、loc、query、pipe、groupby 以及 agg)组成的,这些方法的输出都是 DataFrame 对象或 Series 对象(或 DataFrameGroupBy)。

了解它们最好的方法就是实际使用。举个简单的例子:

(df 
.groupby('age') 
.agg({'generation':'unique'}) 
.rename(columns={'generation':'unique_generation'})
# Recommended from v0.25
# .agg(unique_generation=('generation', 'unique')))

获得每个年龄范围中所有唯一年代标签的简单链

在得到的数据框中,「年龄」列是索引。

除了了解到「X 代」覆盖了三个年龄组外,分解这条链。第一步是对年龄组分组。这一方法返回了一个 DataFrameGroupBy 对象,在这个对象中,通过选择组的唯一年代标签聚合了每一组。

在这种情况下,聚合方法是「unique」方法,但它也可以接受任何(匿名)函数。

在 0.25 版本中,Pandas 引入了使用 agg 的新方法:https://dev.pandas.io/whatsnew/v0.25.0.html#groupby-aggregation-with-relabeling。

(df 
.groupby(['country', 'year']) 
.agg({'suicides_per_100k': 'sum'}) 
.rename(columns={'suicides_per_100k':'suicides_sum'})
# Recommended from v0.25
# .agg(suicides_sum=('suicides_per_100k', 'sum')) .sort_values('suicides_sum', ascending=False) .head(10))

用排序值(sort_values)和 head 得到自杀率排前十的国家和年份

(df 
.groupby(['country', 'year']) 
.agg({'suicides_per_100k': 'sum'}) 
.rename(columns={'suicides_per_100k':'suicides_sum'})
# Recommended from v0.25
# .agg(suicides_sum=('suicides_per_100k', 'sum')) 
.nlargest(10, columns='suicides_sum'))

用排序值 nlargest 得到自杀率排前十的国家和年份

在这些例子中,输出都是一样的:有两个指标(国家和年份)的 MultiIndex 的 DataFrame,还有包含排序后的 10 个最大值的新列 suicides_sum。

「国家」和「年份」列是索引。

nlargest(10) 比 sort_values(ascending=False).head(10) 更有效。

另一个有趣的方法是 unstack:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.unstack.html,这种方法允许转动索引水平。

(mi_df 
.loc[('Switzerland', 2000)] 
.unstack('sex') [['suicides_no', 'population']])

「age」是索引,列「suicides_no」和「population」都有第二个水平列「sex」。

下一个方法 pipe 是最通用的方法之一。这种方法允许管道运算(就像在 shell 脚本中)执行比链更多的运算。

管道的一个简单但强大的用法是记录不同的信息。

def log_head(df, head_count=10): 
    print(df.head(head_count)) 
    return df

def log_columns(df): 
    print(df.columns) 
    return df

def log_shape(df): 
    print(f'shape = {df.shape}') 
    return df

和 pipe 一起使用的不同记录函数。

举个例子,我们想验证和 year 列相比,country_year 是否正确:

(df 
.assign(valid_cy=lambda _serie: _serie.apply( 
lambda _row: re.split(r'(?=\d{4})', 
_row['country_year'])[1] == str(_row['year']), axis=1)) 
.query('valid_cy == False') 
.pipe(log_shape))

用来验证「country_year」列中年份的管道。

管道的输出是 DataFrame,但它也可以在标准输出(console/REPL)中打印。

shape = (0, 13)

你也可以在一条链中用不同的 pipe。

(df .pipe(log_shape) 
.query('sex == "female"') 
.groupby(['year', 'country']) 
.agg({'suicides_per_100k':'sum'}) 
.pipe(log_shape) 
.rename(columns={'suicides_per_100k':'sum_suicides_per_100k_female'})
# Recommended from v0.25
# .agg(sum_suicides_per_100k_female=('suicides_per_100k', 'sum')) 
.nlargest(n=10, columns=['sum_suicides_per_100k_female']))

女性自杀数量最高的国家和年份。

生成的 DataFrame 如下所示:

索引是「年份」和「国家」。

标准输出的打印如下所示:

shape = (27820, 12)
shape = (2321, 1)

除了记录到控制台外,pipe 还可以直接在数据框的列上应用函数。

from sklearn.preprocessing import MinMaxScaler

def norm_df(df, columns): 
    return df.assign(**{col: MinMaxScaler().fit_transform(df[[col]].values.astype(float))  
    for col in columns})  

for sex in ['male', 'female']: 
    print(sex) 
    print( df .query(f'sex == "{sex}"') 
    .groupby(['country']) 
    .agg({'suicides_per_100k': 'sum', 'gdp_year': 'mean'}) 
    .rename(columns={'suicides_per_100k':'suicides_per_100k_sum',  'gdp_year': 'gdp_year_mean'})
    # Recommended in v0.25
    # .agg(suicides_per_100k=('suicides_per_100k_sum', 'sum'), 
    # gdp_year=('gdp_year_mean', 'mean')) 
    .pipe(norm_df, columns=['suicides_per_100k_sum', 'gdp_year_mean']) 
    .corr(method='spearman') ) 
    print('\n')

自杀数量是否和 GDP 的下降相关?是否和性别相关?

上面的代码在控制台中的打印如下所示:

male
                    suicides_per_100k_sum gdp_year_mean
suicides_per_100k_sum       1.000000         0.421218
gdp_year_mean               0.421218         1.000000
female
                     suicides_per_100k_sum gdp_year_mean
suicides_per_100k_sum        1.000000         0.452343
gdp_year_mean                0.452343         1.000000

深入研究代码。norm_df() 将一个 DataFrame 和用 MinMaxScaling 扩展列的列表当做输入。使用字典理解,创建一个字典 {column_name: method, …},然后将其解压为 assign() 函数的参数 (colunmn_name=method, …)。

在这种特殊情况下,min-max 缩放不会改变对应的输出:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.corr.html,它仅用于参数。

在(遥远的?)未来,缓式评估(lazy evaluation)可能出现在方法链中,所以在链上做一些投资可能是一个好想法。

最后(随机)的技巧

下面的提示很有用,但不适用于前面的任何部分:

itertuples() 可以更高效地遍历数据框的行;

>>> %%time
>>> for row in df.iterrows(): continue
CPU times: user 1.97 s, sys: 17.3 ms, total: 1.99 s
>>> for tup in df.itertuples(): continue
CPU times: user 55.9 ms, sys: 2.85 ms, total: 58.8 ms

注意:tup 是一个 namedtuple

join() 用了 merge();

在 Jupyter 笔记本中,在代码块的开头写上 %%time,可以有效地测量时间;

UInt8 类:https://pandas.pydata.org/pandas-docs/stable/user_guide/gotchas.html#support-for-integer-na支持带有整数的 NaN 值;

记住,任何密集的 I/O(例如展开大型 CSV 存储)用低级方法都会执行得更好(尽可能多地用 Python 的核心函数)。

还有一些本文没有涉及到的有用的方法和数据结构,这些方法和数据结构都很值得花时间去理解:

数据透视表:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.pivot.html?source=post_page---------------------------

时间序列/日期功能:https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html?source=post_page---------------------------;

绘图:https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html?source=post_page---------------------------。

总结

希望你可以因为这篇简短的文章,更好地理解 Pandas 背后的工作原理,以及 Pandas 库的发展现状。本文还展示了不同的用于优化数据框内存以及快速分析数据的工具。希望对现在的你来说,索引和查找的概念能更加清晰。最后,你还可以试着用方法链写更长的链。

这里还有一些笔记:https://github.com/unit8co/medium-pandas-wan?source=post_page---------------------------

除了文中的所有代码外,还包括简单数据索引数据框(df)和多索引数据框(mi_df)性能的定时指标。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-08-15,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 相约机器人 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
数据保险箱
数据保险箱(Cloud Data Coffer Service,CDCS)为您提供更高安全系数的企业核心数据存储服务。您可以通过自定义过期天数的方法删除数据,避免误删带来的损害,还可以将数据跨地域存储,防止一些不可抗因素导致的数据丢失。数据保险箱支持通过控制台、API 等多样化方式快速简单接入,实现海量数据的存储管理。您可以使用数据保险箱对文件数据进行上传、下载,最终实现数据的安全存储和提取。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档