专栏首页AI科技时讯人工智能和机器学习的前世今生

人工智能和机器学习的前世今生

如果正确的利用模式识别进行商业预测和决策,那么会为企业带来巨大的利益。机器学习(ML)研究这些模式,并将人类决策过程编码成算法。这些算法可以被应用到几个实例以得出有意义的结论。在这篇文章中,我们将了解一些机器学习的基础、工作原理及特点。

举例来了解机器学习

经研究预测,截至到2020年,企业采用机器学习、人工智能和深度学习、物联网(IOT)以及大数据将从他们那些不太知情的同行那里带走超过1兆2000亿美元。

数据是机器学习的关键。算法从一定数量的数据中学习,然后应用这种学习来做出明智的决策。Netflix有一个很好的关于下一个你想看的节目的想法,Facebook可以在照片中识别你和你的朋友,这要感谢机器学习.。

机器学习是关于自动执行任务的,它的应用跨越了广泛的行业领域。数据安全公司可以使用机器学习来追踪恶意软件,而金融公司可以使用它来增强其盈利能力这里有个例子,让我们考虑一个手电筒,无论什么时候,当“黑暗”一词出现在一个短语中的时候,它就会被程序打开。我们将使用的几个短语作为关于手电筒的机器学习算法的输入数据。

用程序语言来表达机器学习

为了解决业务的复杂性,并带来机器学习的技术创新,编程语言和框架技术不断地被引入和更新。一些编程语言来来往往,而一些被相关的、保留的还在经历着考验。这两个编程语言在机器学习和人工智能的圈子里是最强大的。还有其他语言如java、C++、Julia、SAS、MATLAB、Scala,还有很多。然而,我们讨论的仅限于Python和R这两个语言.

Python不仅流行,还很简单,并且功能众多。它是一种能在所有主流平台上使用的便携式编程语言,如Linux、Windows、MAC和UNIX。Python不仅作为Web应用开发的通用语言,而且还可以作为科学计算、数据挖掘和分析的专用语言。如果有一种在招聘人员中最喜欢的机器学习和AI的编程技术,那就肯定是Python了。

R语言是适用于机器学习的另一种编程语言,并且它与统计学家和数学家有着密切的联系。现在,虽然机器学习本身与统计学的原理密切相关,但是R作为机器学习语言可以带来巨大的好处。如果你希望在大数据中解决模式问题,R语言是最佳选择,它是由统计学家和科学家设计的,很方便地用于数据分析。

机器学习算法的工作原理

机器学习算法评估一个用一种特殊的数据来泛化的预测模型。因此,必须有大量的实例,以供机器学习算法用来理解系统的行为。现在,当机器学习算法与新类型的数据一起出现时,系统将能够生成类似的预测。了解机器学习算法的不同组成部分和它们之间的相互关系,可以使机器学习任务变得更加容易。

机器学习算法有一个结构化的学习组件,使他们有能力理解输入数据中的模式,从而导致输出。

输入数据 -> 模式 -> 机器学习算法 -> 推断/输出

这里让"Y"表示未来的预测结果,让"X"表示输入的实例.那么,我们得出这个表达式:

Y=f (X)

其中“Y”也称为映射函数,“f”称为目标函数。“f”总是未知的,因为它在数学上是无法确定的。因此,机器学习被用来获得目标函数的近似值,“f”。机器学习算法考虑到关于目标函数的几个假设,并用一个带有评估的假设来开始。为了得到输出的最佳估值,进行了大量的假设迭代。正是这种假设使得机器学习算法能够在短时间内得到一个更好地逼近目标函数的近似值。

人工智能vs机器学习vs深度学习

人工智能、机器学习和深度学习是经常可以交替使用的概念,这或多或少地加重了与这些概念相关联的已经存在的混淆程度。让我们领会这些概念,直截了当地理解它们的内涵和之间的细微差别。

人工智能是一个比机器学习更广泛的概念。它是关于将人类的认知智能如何传授给计算机的过程。任何机器使用算法以智能方式执行任务,这就是展现的人工智能。

机器学习是人工智能的一个子集。它是关于机器从一组数据中学习的能力。通过信息处理的这种学习增强了算法,从而提供更好的评估和对未来的预测。

深度学习深入机器学习,可以被认为是机器学习的一个子集。神经网络允许计算机模仿人类的大脑。就像我们的大脑天生的具有识别归类和分类信息的模式一样,神经网络也为计算机实现了同样的功能。深度学习有时也被称为深度神经网络,因为决策树的嵌套层次结构的层数是数以百万计的数据节点。

让你的机器学习人工智能认证计数

自从第一次工业革命以来,机器就一直驱动着我们的生活方式,使之成为当今工业4.0的趋势。因此,在某种程度上有必要通过让你很好地了解一个强大的技术平台,如机器学习、人工智能和深度学习,成为这一革命的一个组成部分。一旦你完成了它的来龙去脉,成功就在眼前拥抱你!

本文分享自微信公众号 - AI科技时讯(aiblog_research),作者:阿里云栖方向

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-05-24

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 机器学习:从入门到晋级

    目前,人工智能(AI)非常热门,许多人都想一窥究竟。如果你对人工智能有所了解,但对机器学习(Machine Learning)的理解有很多的困...

    用户3578099
  • 入门人工智能学习路线

    这门课基本涵盖了机器学习的主要知识点,例如:线性回归、逻辑回归、支持向量机、神经网络、K-Means、异常检测等等。而且课程中没有复杂的公式推导和理论分析。Ng...

    用户3578099
  • 在一头扎进机器学习前应该知道的那些事儿

    机器学习一直是一个火热的研究领域,深度学习方法的提出又为这个领域添了一把火,使得很多人对该领域感兴趣并想投身于该领域的研究之中。那么,对于想从事机器学习领域的人...

    用户3578099
  • 独家揭秘| 数据挖掘、机器学习和深度学习之间的区别

    导读:机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自...

    AI科技评论
  • Python快速实战机器学习(1) 教材准备

    机器学习是如今人工智能时代背景下一个重要的领域,它应用广泛,如推荐系统,文本分析,图像识别,语言翻译等等。要想学通这个大的领域不是一件容易的事情,所以我打算集大...

    HuangWeiAI
  • 人工智能真的有那么神秘么,推荐一份机器学习入门书单搞定它!

    机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重...

    黄小斜
  • 敲门算法:和你一起学李宏毅

    “Jupyter Notebook 是一款开放源代码的 Web 应用程序,可让我们创建并共享代码和文档。它提供了一个环境,你可以在其中记录代码,运行代码,查看结...

    Datawhale
  • 人工智能真的有那么神秘么,推荐一份机器学习入门书单搞定它!

    机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重...

    程序员书单
  • 机器学习很难上手和提升?你只差一条学习路径!

    从网易云音乐的歌单、亚马逊的商品到抖音的短视频,机器学习主导的推荐系统改变了用户浏览习惯;iphone x 在刘海中祭出3D结构光,人脸识别AI便在移动终端迅速...

    昱良
  • 大数据架构详解:从数据获取到深度学习(内含福利)

    机器学习(Machine Learning,ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。其专门研究计算机是怎样模拟...

    CSDN技术头条

扫码关注云+社区

领取腾讯云代金券