人工智能和机器学习的前世今生

如果正确的利用模式识别进行商业预测和决策,那么会为企业带来巨大的利益。机器学习(ML)研究这些模式,并将人类决策过程编码成算法。这些算法可以被应用到几个实例以得出有意义的结论。在这篇文章中,我们将了解一些机器学习的基础、工作原理及特点。

举例来了解机器学习

经研究预测,截至到2020年,企业采用机器学习、人工智能和深度学习、物联网(IOT)以及大数据将从他们那些不太知情的同行那里带走超过1兆2000亿美元。

数据是机器学习的关键。算法从一定数量的数据中学习,然后应用这种学习来做出明智的决策。Netflix有一个很好的关于下一个你想看的节目的想法,Facebook可以在照片中识别你和你的朋友,这要感谢机器学习.。

机器学习是关于自动执行任务的,它的应用跨越了广泛的行业领域。数据安全公司可以使用机器学习来追踪恶意软件,而金融公司可以使用它来增强其盈利能力这里有个例子,让我们考虑一个手电筒,无论什么时候,当“黑暗”一词出现在一个短语中的时候,它就会被程序打开。我们将使用的几个短语作为关于手电筒的机器学习算法的输入数据。

用程序语言来表达机器学习

为了解决业务的复杂性,并带来机器学习的技术创新,编程语言和框架技术不断地被引入和更新。一些编程语言来来往往,而一些被相关的、保留的还在经历着考验。这两个编程语言在机器学习和人工智能的圈子里是最强大的。还有其他语言如java、C++、Julia、SAS、MATLAB、Scala,还有很多。然而,我们讨论的仅限于Python和R这两个语言.

Python不仅流行,还很简单,并且功能众多。它是一种能在所有主流平台上使用的便携式编程语言,如Linux、Windows、MAC和UNIX。Python不仅作为Web应用开发的通用语言,而且还可以作为科学计算、数据挖掘和分析的专用语言。如果有一种在招聘人员中最喜欢的机器学习和AI的编程技术,那就肯定是Python了。

R语言是适用于机器学习的另一种编程语言,并且它与统计学家和数学家有着密切的联系。现在,虽然机器学习本身与统计学的原理密切相关,但是R作为机器学习语言可以带来巨大的好处。如果你希望在大数据中解决模式问题,R语言是最佳选择,它是由统计学家和科学家设计的,很方便地用于数据分析。

机器学习算法的工作原理

机器学习算法评估一个用一种特殊的数据来泛化的预测模型。因此,必须有大量的实例,以供机器学习算法用来理解系统的行为。现在,当机器学习算法与新类型的数据一起出现时,系统将能够生成类似的预测。了解机器学习算法的不同组成部分和它们之间的相互关系,可以使机器学习任务变得更加容易。

机器学习算法有一个结构化的学习组件,使他们有能力理解输入数据中的模式,从而导致输出。

输入数据 -> 模式 -> 机器学习算法 -> 推断/输出

这里让"Y"表示未来的预测结果,让"X"表示输入的实例.那么,我们得出这个表达式:

Y=f (X)

其中“Y”也称为映射函数,“f”称为目标函数。“f”总是未知的,因为它在数学上是无法确定的。因此,机器学习被用来获得目标函数的近似值,“f”。机器学习算法考虑到关于目标函数的几个假设,并用一个带有评估的假设来开始。为了得到输出的最佳估值,进行了大量的假设迭代。正是这种假设使得机器学习算法能够在短时间内得到一个更好地逼近目标函数的近似值。

人工智能vs机器学习vs深度学习

人工智能、机器学习和深度学习是经常可以交替使用的概念,这或多或少地加重了与这些概念相关联的已经存在的混淆程度。让我们领会这些概念,直截了当地理解它们的内涵和之间的细微差别。

人工智能是一个比机器学习更广泛的概念。它是关于将人类的认知智能如何传授给计算机的过程。任何机器使用算法以智能方式执行任务,这就是展现的人工智能。

机器学习是人工智能的一个子集。它是关于机器从一组数据中学习的能力。通过信息处理的这种学习增强了算法,从而提供更好的评估和对未来的预测。

深度学习深入机器学习,可以被认为是机器学习的一个子集。神经网络允许计算机模仿人类的大脑。就像我们的大脑天生的具有识别归类和分类信息的模式一样,神经网络也为计算机实现了同样的功能。深度学习有时也被称为深度神经网络,因为决策树的嵌套层次结构的层数是数以百万计的数据节点。

让你的机器学习人工智能认证计数

自从第一次工业革命以来,机器就一直驱动着我们的生活方式,使之成为当今工业4.0的趋势。因此,在某种程度上有必要通过让你很好地了解一个强大的技术平台,如机器学习、人工智能和深度学习,成为这一革命的一个组成部分。一旦你完成了它的来龙去脉,成功就在眼前拥抱你!

本文分享自微信公众号 - AI科技时讯(aiblog_research)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-05-24

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏测试技术圈

无需恐惧:AI-DT框架的成熟度分析

AI-DT(AI Driven Testing)也就是AI驱动测试,AI驱动测试是AI驱动完成测试工作和测试流程,帮助或者辅助测试工程师完成工作。在未来的测试工...

11540
来自专栏机器之心

谷歌高级研究员Nature发文:避开机器学习三大「坑」

机器学习正在推动各个科学领域的研究进展,其强大的模式发现和预测工具正在助力所有领域的科学家——从寻找合成分子到提升医学诊断效果再到揭示基本粒子,可谓应有尽有。

10610
来自专栏机器之心

谷歌图表征学习创新:学习单个节点多个嵌入&自动学习最优超参数

表示实体间关系的关系数据在网络世界(如在线社交网络)和现实世界(如蛋白质交互网络(protein interaction network)中无处不在。这些数据可...

10420
来自专栏机器学习与统计学

百度机器学习实习三面试题及经验

作者:Ariana0402 来源:牛客网 链接:nowcoder.com/discuss/17

12710
来自专栏机器学习与统计学

用有趣的方式解释梯度下降算法

本文为3Blue1Brown神经网络课程讲解第二部分《Gradient descent, how neural networks learn 》的学习笔记,观看...

9910
来自专栏机器之心

​ICCV 2019 Oral论文:KAUST提出大幅加深图卷积网络的新方法

论文作者:Guohao Li, Matthias Müller, Ali Thabet, Bernard Ghanem

22130
来自专栏CloudBest

2019云计算发展大调查:企业再穷也不能穷“云”

调查结果指出,即使企业致力于削减成本,却在云计算方面花费更多的资金。这种矛盾反映了这样一个事实,即在需要复杂工具保持竞争力的商业环境中,云计算现在绝对是主要的主...

8430
来自专栏磐创AI技术团队的专栏

知识图谱与机器学习 | KG入门 -- Part1-b 图深度学习

来源 | Medium 【磐创AI导读】:本系列文章为大家介绍了知识图谱与机器学习,这篇文章是上一篇文章:知识图谱与机器学习 | KG入门 -- Part1 D...

19020
来自专栏奇点大数据

“深度学习入行门槛太低了,不开心!”

这么一篇标题“忧心忡忡”的讨论帖,毫无意外的在reddit上炸了。为什么发起这么一个讨论?先看看原po主是怎么说的。

8630
来自专栏小小挖掘机

搜索推荐算法挑战赛OGeek-完整方案及代码(亚军)

首先很幸运拿到TIANCHI天池-OGeek算法挑战赛大赛的亚军,同时非常感谢大佬队友的带飞,同时希望我的分享与总结能给大家带来些许帮助,并且一起交流学习。(作...

38920

扫码关注云+社区

领取腾讯云代金券

年度创作总结 领取年终奖励