专栏首页九州牧云浅谈分布式消息技术 Kafka

浅谈分布式消息技术 Kafka

Kafka的基本介绍

Kafka是最初由Linkedin公司开发,是一个分布式、分区的、多副本的、多订阅者,基于zookeeper协调的分布式日志系统(也可以当做MQ系统),常见可以用于web/nginx日志、访问日志,消息服务等等,Linkedin于2010年贡献给了Apache基金会并成为顶级开源项目。

主要应用场景是:日志收集系统和消息系统。

Kafka主要设计目标如下:

  • 以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间的访问性能。
  • 高吞吐率。即使在非常廉价的商用机器上也能做到单机支持每秒100K条消息的传输。
  • 支持Kafka Server间的消息分区,及分布式消费,同时保证每个Partition内的消息顺序传输。
  • 同时支持离线数据处理和实时数据处理。

Kafka的设计原理分析

一个典型的Kafka集群中包含若干Producer,若干Broker,若干Consumer,以及一个Zookeeper集群。Kafka通过Zookeeper管理集群配置,选举Leader,以及在Consumer Group发生变化时进行Rebalance。Producer使用push模式将消息发布到Broker,Consumer使用Pull模式从Broker订阅并消费消息。

Kafka专用术语:

  • Broker:消息中间件处理结点,一个Kafka节点就是一个broker,多个broker可以组成一个Kafka集群。
  • Topic:一类消息,Kafka集群能够同时负责多个topic的分发。
  • Partition:topic物理上的分组,一个topic可以分为多个partition,每个partition是一个有序的队列。
  • Segment:partition物理上由多个segment组成。
  • offset:每个partition都由一系列有序的、不可变的消息组成,这些消息被连续的追加到partition中。partition中的每个消息都有一个连续的序列号叫做offset,用于partition唯一标识一条消息。
  • Producer:负责发布消息到Kafka broker。
  • Consumer:消息消费者,向Kafka broker读取消息的客户端。
  • Consumer Group:每个Consumer属于一个特定的Consumer Group。

Kafka数据传输的事务特点

At most once: 最多一次,这个和JMS中"非持久化"消息类似,发送一次,无论成败,将不会重发。消费者fetch消息,然后保存offset,然后处理消息;当client保存offset之后,但是在消息处理过程中出现了异常,导致部分消息未能继续处理。那么此后"未处理"的消息将不能被fetch到,这就是"at most once"。

At least once: 消息至少发送一次,如果消息未能接受成功,可能会重发,直到接收成功。消费者fetch消息,然后处理消息,然后保存offset。如果消息处理成功之后,但是在保存offset阶段zookeeper异常导致保存操作未能执行成功,这就导致接下来再次fetch时可能获得上次已经处理过的消息,这就是"at least once",原因offset没有及时的提交给zookeeper,zookeeper恢复正常还是之前offset状态。

Exactly once: 消息只会发送一次。kafka中并没有严格的去实现(基于2阶段提交),我们认为这种策略在kafka中是没有必要的。

通常情况下"at-least-once"是我们首选。

Kafka消息存储格式

Topic & Partition

一个Topic可以认为一个一类消息,每个Topic将被分成多个Partition,每个Partition在存储层面是Append Log文件。

在Kafka文件存储中,同一个Topic下有多个不同Partition,每个Partition为一个目录,Partiton命名规则为Topic名称+有序序号,第一个Partiton序号从0开始,序号最大值为Partitions数量减1。

每个Partion(目录)相当于一个巨型文件被平均分配到多个大小相等Segment(段)数据文件中。但每个段Segment file消息数量不一定相等,这种特性方便old segment file快速被删除。

每个Partiton只需要支持顺序读写就行了,segment文件生命周期由服务端配置参数决定。

这样做的好处就是能快速删除无用文件,有效提高磁盘利用率。

Segment file组成: 由2大部分组成,分别为index file和data file,此2个文件一一对应,成对出现,后缀".index"和“.log”分别表示为segment索引文件、数据文件.

Segment文件命名规则: Partion全局的第一个Segment从0开始,后续每个Segment文件名为上一个Segment文件最后一条消息的Offset值。数值最大为64位long大小,19位数字字符长度,没有数字用0填充。

Segment中index与data file对应关系物理结构如下:

上图中索引文件存储大量元数据,数据文件存储大量消息,索引文件中元数据指向对应数据文件中message的物理偏移地址。

其中以索引文件中元数据3,497为例,依次在数据文件中表示第3个message(在全局partiton表示第368772个message),以及该消息的物理偏移地址为497。

了解到Segment data file由许多message组成,下面详细说明message物理结构如下:

参数说明:

关键字

解释说明

8 byte offset

在parition(分区)内的每条消息都有一个有序的id号,这个id号被称为偏移(offset),它可以唯一确定每条消息在parition(分区)内的位置。即offset表示partiion的第多少message

4 byte message size

message大小

4 byte CRC32

用crc32校验message

1 byte

表示本次发布Kafka服务程序协议版本号

1 byte “attributes"

表示为独立版本、或标识压缩类型、或编码类型。

4 byte key length

表示key的长度,当key为-1时,K byte key字段不填

K byte key

可选

value bytes payload

表示实际消息数据。

副本(replication)策略

Kafka的高可靠性的保障来源于其健壮的副本(replication)策略。

1. 数据同步

Kafka在0.8版本前没有提供Partition的Replication机制,一旦Broker宕机,其上的所有Partition就都无法提供服务,而Partition又没有备份数据,数据的可用性就大大降低了。所以0.8后提供了Replication机制来保证Broker的failover。

引入Replication之后,同一个Partition可能会有多个Replica,而这时需要在这些Replication之间选出一个Leader,Producer和Consumer只与这个Leader交互,其它Replica作为Follower从Leader中复制数据。

2. 副本放置策略

为了更好的做负载均衡,Kafka尽量将所有的Partition均匀分配到整个集群上。

Kafka分配Replica的算法如下:

  • 将所有存活的N个Brokers和待分配的Partition排序
  • 将第i个Partition分配到第(i mod n)个Broker上,这个Partition的第一个Replica存在于这个分配的Broker上,并且会作为partition的优先副本
  • 将第i个Partition的第j个Replica分配到第((i + j) mod n)个Broker上
  • 假设集群一共有4个brokers,一个Topic有4个partition,每个Partition有3个副本。下图是每个Broker上的副本分配情况。

3. 同步策略

Producer在发布消息到某个Partition时,先通过ZooKeeper找到该Partition的Leader,然后无论该Topic的Replication Factor为多少,Producer只将该消息发送到该Partition的Leader。Leader会将该消息写入其本地Log。每个Follower都从Leader pull数据。这种方式上,Follower存储的数据顺序与Leader保持一致。Follower在收到该消息并写入其Log后,向Leader发送ACK。一旦Leader收到了ISR中的所有Replica的ACK,该消息就被认为已经commit了,Leader将增加HW并且向Producer发送ACK。

为了提高性能,每个Follower在接收到数据后就立马向Leader发送ACK,而非等到数据写入Log中。因此,对于已经commit的消息,Kafka只能保证它被存于多个Replica的内存中,而不能保证它们被持久化到磁盘中,也就不能完全保证异常发生后该条消息一定能被Consumer消费。

Consumer读消息也是从Leader读取,只有被commit过的消息才会暴露给Consumer。

Kafka Replication的数据流如下图所示:

对于Kafka而言,定义一个Broker是否“活着”包含两个条件:

  • 一是它必须维护与ZooKeeper的session(这个通过ZooKeeper的Heartbeat机制来实现)。
  • 二是Follower必须能够及时将Leader的消息复制过来,不能“落后太多”。

Leader会跟踪与其保持同步的Replica列表,该列表称为ISR(即in-sync Replica)。如果一个Follower宕机,或者落后太多,Leader将把它从ISR中移除。这里所描述的“落后太多”指Follower复制的消息落后于Leader后的条数超过预定值或者Follower超过一定时间未向Leader发送fetch请求。

Kafka只解决fail/recover,一条消息只有被ISR里的所有Follower都从Leader复制过去才会被认为已提交。这样就避免了部分数据被写进了Leader,还没来得及被任何Follower复制就宕机了,而造成数据丢失(Consumer无法消费这些数据)。而对于Producer而言,它可以选择是否等待消息commit。这种机制确保了只要ISR有一个或以上的Follower,一条被commit的消息就不会丢失。

4. leader选举

Leader选举本质上是一个分布式锁,有两种方式实现基于ZooKeeper的分布式锁:

节点名称唯一性:多个客户端创建一个节点,只有成功创建节点的客户端才能获得锁

临时顺序节点:所有客户端在某个目录下创建自己的临时顺序节点,只有序号最小的才获得锁

Majority Vote的选举策略和ZooKeeper中的Zab选举是类似的,实际上ZooKeeper内部本身就实现了少数服从多数的选举策略。kafka中对于Partition的leader副本的选举采用了第一种方法:为Partition分配副本,指定一个ZNode临时节点,第一个成功创建节点的副本就是Leader节点,其他副本会在这个ZNode节点上注册Watcher监听器,一旦Leader宕机,对应的临时节点就会被自动删除,这时注册在该节点上的所有Follower都会收到监听器事件,它们都会尝试创建该节点,只有创建成功的那个follower才会成为Leader(ZooKeeper保证对于一个节点只有一个客户端能创建成功),其他follower继续重新注册监听事件。

Kafka消息分组,消息消费原理

同一Topic的一条消息只能被同一个Consumer Group内的一个Consumer消费,但多个Consumer Group可同时消费这一消息。

这是Kafka用来实现一个Topic消息的广播(发给所有的Consumer)和单播(发给某一个Consumer)的手段。一个Topic可以对应多个Consumer Group。如果需要实现广播,只要每个Consumer有一个独立的Group就可以了。要实现单播只要所有的Consumer在同一个Group里。用Consumer Group还可以将Consumer进行自由的分组而不需要多次发送消息到不同的Topic。

Push vs. Pull

作为一个消息系统,Kafka遵循了传统的方式,选择由Producer向broker push消息并由Consumer从broker pull消息。

push模式很难适应消费速率不同的消费者,因为消息发送速率是由broker决定的。push模式的目标是尽可能以最快速度传递消息,但是这样很容易造成Consumer来不及处理消息,典型的表现就是拒绝服务以及网络拥塞。而pull模式则可以根据Consumer的消费能力以适当的速率消费消息。

对于Kafka而言,pull模式更合适。pull模式可简化broker的设计,Consumer可自主控制消费消息的速率,同时Consumer可以自己控制消费方式——即可批量消费也可逐条消费,同时还能选择不同的提交方式从而实现不同的传输语义。

Kafak顺序写入与数据读取

生产者(producer)是负责向Kafka提交数据的,Kafka会把收到的消息都写入到硬盘中,它绝对不会丢失数据。为了优化写入速度Kafka采用了两个技术,顺序写入和MMFile。

顺序写入

因为硬盘是机械结构,每次读写都会寻址,写入,其中寻址是一个“机械动作”,它是最耗时的。所以硬盘最“讨厌”随机I/O,最喜欢顺序I/O。为了提高读写硬盘的速度,Kafka就是使用顺序I/O。

每条消息都被append到该Partition中,属于顺序写磁盘,因此效率非常高。

对于传统的message queue而言,一般会删除已经被消费的消息,而Kafka是不会删除数据的,它会把所有的数据都保留下来,每个消费者(Consumer)对每个Topic都有一个offset用来表示读取到了第几条数据。

即便是顺序写入硬盘,硬盘的访问速度还是不可能追上内存。所以Kafka的数据并不是实时的写入硬盘,它充分利用了现代操作系统分页存储来利用内存提高I/O效率。

在Linux Kernal 2.2之后出现了一种叫做“零拷贝(zero-copy)”系统调用机制,就是跳过“用户缓冲区”的拷贝,建立一个磁盘空间和内存空间的直接映射,数据不再复制到“用户态缓冲区”系统上下文切换减少2次,可以提升一倍性能。

通过mmap,进程像读写硬盘一样读写内存(当然是虚拟机内存)。使用这种方式可以获取很大的I/O提升,省去了用户空间到内核空间复制的开销(调用文件的read会把数据先放到内核空间的内存中,然后再复制到用户空间的内存中。)

消费者(读取数据)

试想一下,一个Web Server传送一个静态文件,如何优化?答案是zero copy。传统模式下我们从硬盘读取一个文件是这样的。

先复制到内核空间(read是系统调用,放到了DMA,所以用内核空间),然后复制到用户空间(1、2);从用户空间重新复制到内核空间(你用的socket是系统调用,所以它也有自己的内核空间),最后发送给网卡(3、4)。

Zero Copy中直接从内核空间(DMA的)到内核空间(Socket的),然后发送网卡。这个技术非常普遍,Nginx也是用的这种技术。

实际上,Kafka把所有的消息都存放在一个一个的文件中,当消费者需要数据的时候Kafka直接把“文件”发送给消费者。当不需要把整个文件发出去的时候,Kafka通过调用Zero Copy的sendfile这个函数,这个函数包括:

  • out_fd作为输出(一般及时socket的句柄)
  • in_fd作为输入文件句柄
  • off_t表示in_fd的偏移(从哪里开始读取)
  • size_t表示读取多少个

「 浅谈大规模分布式系统中那些技术点」系列文章:

浅谈分布式事务

浅谈分布式服务协调技术 Zookeeper

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • error while loading shared libraries libaio.so.1

    当我们使用“mysql_install_db”安装MySQL时,需要libaio包,现将不同Linux系统安装该包的方式总结如下:

    九州暮云
  • Java Reflection Tutorial

    What is reflection, why is it useful, and how to use it?

    九州暮云
  • YARN任务监控界面Aggregate Resource Allocation指标解析

    在YARN的原生任务监控界面中,我们经常能看到Aggregate Resource Allocation这个指标(图中高亮选中部分),这个指标表示该任务拥有的所...

    九州暮云
  • Kafka系列1:Kafka概况

    Kafka是当前分布式系统中最流行的消息中间件之一,凭借着其高吞吐量的设计,在日志收集系统和消息系统的应用场景中深得开发者喜爱。本篇就聊聊Kafka相关的一些知...

    王金龙
  • Kafka系列9:面试题是否有必要深入了解其背后的原理?我觉得应该刨根究底(上)

    在本文开始之前,作者一直有个疑惑,就是面试题是只写写问题和答案就草草了事,还是应该深入分析一下其背后发生的一些原理。和朋友探讨以后作者还是决定采用后者的方式,因...

    z小赵
  • Kafka系列9:面试题是否有必要深入了解其背后的原理?我觉得应该刨根究底(上)

    在本文开始之前,作者一直有个疑惑,就是面试题是只写写问题和答案就草草了事,还是应该深入分析一下其背后发生的一些原理。和朋友探讨以后作者还是决定采用后者的方式,因...

    z小赵
  • 中国移动5G消息App下架背后,是技术问题,还是有不可告人的秘密?

    中国移动方面回应称:该APP是面向开发者做内测使用的,并非消费者最终体验的版本。因存在一些技术问题临时下线,稍后会重新上线。

    悲了伤的白犀牛
  • Kafka学习笔记之Kafka背景及架构介绍

      本文介绍了Kafka的创建背景,设计目标,使用消息系统的优势以及目前流行的消息系统对比。并介绍了Kafka的架构,Producer消息路由,Consumer...

    Jetpropelledsnake21
  • Kafka剖析系列之背景及架构介绍

    Kafka是由LinkedIn开发的一个分布式的消息系统,使用Scala编写,它以可水平扩展和高吞吐率而被广泛使用。目前越来越多的开源分布式处理系统如Cloud...

    用户1263954
  • 高调出战的5G消息,能避开 “高开低走”的命运吗?

    4月8日,5G消息业务发布。这款新产品由3家运营商、9家手机厂商和2家生态合作伙伴联合发布,也应该创下了疫情期间线上发布会中副总级嘉宾规模的新记录。

    脑极体

扫码关注云+社区

领取腾讯云代金券