前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >机器学习面试中常考的知识点和代码实现(一)

机器学习面试中常考的知识点和代码实现(一)

作者头像
AI研习社
发布2019-08-26 17:12:25
6890
发布2019-08-26 17:12:25
举报
文章被收录于专栏:AI研习社AI研习社

作者:mantchs 著作权归作者所有。AI开发者获得授权转载,禁止二次转载 https://github.com/NLP-LOVE/ML-NLP

注:封面图片来自网络

前言

本文是机器学习面试中常考的知识点和代码实现,也是作为一个算法工程师必会的理论基础知识;既然是以面试为主要目的,亦不可以篇概全,请谅解,有问题可提出。

线性回归(Liner Regression)

什么是线性回归

  • 线性:两个变量之间的关系是一次函数关系的——图象是直线,叫做线性。
  • 非线性:两个变量之间的关系不是一次函数关系的——图象不是直线,叫做非线性。
  • 回归:人们在测量事物的时候因为客观条件所限,求得的都是测量值,而不是事物真实的值,为了能够得到真实值,无限次的进行测量,最后通过这些测量数据计算回归到真实值,这就是回归的由来。

能够解决什么样的问题

对大量的观测数据进行处理,从而得到比较符合事物内部规律的数学表达式。也就是说寻找到数据与数据之间的规律所在,从而就可以模拟出结果,也就是对结果进行预测。解决的就是通过已知的数据得到未知的结果。例如:对房价的预测、判断信用评价、电影票房预估等。

一般表达式是什么

w叫做x的系数,b叫做偏置项。

如何计算

Loss Function--MSE

利用梯度下降法找到最小值点,也就是最小误差,最后把 w 和 b 给求出来。

过拟合、欠拟合如何解决

使用正则化项,也就是给loss function加上一个参数项,正则化项有L1正则化、L2正则化、ElasticNet。加入这个正则化项好处:

  • 控制参数幅度,不让模型“无法无天”。
  • 限制参数搜索空间
  • 解决欠拟合与过拟合的问题。

1.什么是L2正则化(岭回归)

方程:

表示上面的 loss function ,在loss function的基础上加入w参数的平方和乘以

,假设:

回忆以前学过的单位元的方程:

正和L2正则化项一样,此时我们的任务变成在L约束下求出J取最小值的解。求解J0的过程可以画出等值线。同时L2正则化的函数L也可以在w1w2的二维平面上画出来。如下图:

L表示为图中的黑色圆形,随着梯度下降法的不断逼近,与圆第一次产生交点,而这个交点很难出现在坐标轴上。这就说明了L2正则化不容易得到稀疏矩阵,同时为了求出损失函数的最小值,使得w1和w2无限接近于0,达到防止过拟合的问题。

2.什么场景下用L2正则化

只要数据线性相关,用LinearRegression拟合的不是很好,需要正则化,可以考虑使用岭回归(L2), 如何输入特征的维度很高,而且是稀疏线性关系的话, 岭回归就不太合适,考虑使用Lasso回归。

3.什么是L1正则化(Lasso回归)

L1正则化与L2正则化的区别在于惩罚项的不同:

求解J0的过程可以画出等值线。同时L1正则化的函数也可以在w1w2的二维平面上画出来。如下图:

惩罚项表示为图中的黑色棱形,随着梯度下降法的不断逼近,与棱形第一次产生交点,而这个交点很容易出现在坐标轴上。这就说明了L1正则化容易得到稀疏矩阵。

4.什么场景下使用L1正则化

L1正则化(Lasso回归)可以使得一些特征的系数变小,甚至还使一些绝对值较小的系数直接变为0,从而增强模型的泛化能力 。对于高的特征数据,尤其是线性关系是稀疏的,就采用L1正则化(Lasso回归),或者是要在一堆特征里面找出主要的特征,那么L1正则化(Lasso回归)更是首选了。

5.什么是ElasticNet回归

ElasticNet综合了L1正则化项和L2正则化项,以下是它的公式:

6.ElasticNet回归的使用场景

ElasticNet在我们发现用Lasso回归太过(太多特征被稀疏为0),而岭回归也正则化的不够(回归系数衰减太慢)的时候,可以考虑使用ElasticNet回归来综合,得到比较好的结果。

线性回归要求因变量服从正态分布?

我们假设线性回归的噪声服从均值为0的正态分布。当噪声符合正态分布N(0,delta^2)时,因变量则符合正态分布N(ax(i)+b,delta^2),其中预测函数y=ax(i)+b。这个结论可以由正态分布的概率密度函数得到。也就是说当噪声符合正态分布时,其因变量必然也符合正态分布。

在用线性回归模型拟合数据之前,首先要求数据应符合或近似符合正态分布,否则得到的拟合函数不正确。

代码实现:

https://github.com/NLP-LOVE/ML-NLP/tree/master/Machine%20Learning/Liner%20Regression/demo

逻辑回归(Logistics Regression)

什么是逻辑回归

逻辑回归是用来做分类算法的,大家都熟悉线性回归,一般形式是Y=aX+b,y的取值范围是[-∞, +∞],有这么多取值,怎么进行分类呢?不用担心,伟大的数学家已经为我们找到了一个方法。

也就是把Y的结果带入一个非线性变换的Sigmoid函数中,即可得到[0,1]之间取值范围的数S,S可以把它看成是一个概率值,如果我们设置概率阈值为0.5,那么S大于0.5可以看成是正样本,小于0.5看成是负样本,就可以进行分类了。

什么是Sigmoid函数

函数公式如下:

函数中t无论取什么值,其结果都在[0,-1]的区间内,回想一下,一个分类问题就有两种答案,一种是“是”,一种是“否”,那0对应着“否”,1对应着“是”,那又有人问了,你这不是[0,1]的区间吗,怎么会只有0和1呢?这个问题问得好,我们假设分类的阈值是0.5,那么超过0.5的归为1分类,低于0.5的归为0分类,阈值是可以自己设定的。

好了,接下来我们把aX+b带入t中就得到了我们的逻辑回归的一般模型方程:

结果P也可以理解为概率,换句话说概率大于0.5的属于1分类,概率小于0.5的属于0分类,这就达到了分类的目的。

损失函数是什么

逻辑回归的损失函数是 log loss,也就是对数似然函数,函数公式如下:

公式中的 y=1 表示的是真实值为1时用第一个公式,真实 y=0 用第二个公式计算损失。为什么要加上log函数呢?可以试想一下,当真实样本为1时,但h=0概率,那么log0=∞,这就对模型最大的惩罚力度;当h=1时,那么log1=0,相当于没有惩罚,也就是没有损失,达到最优结果。所以数学家就想出了用log函数来表示损失函数。

最后按照梯度下降法一样,求解极小值点,得到想要的模型效果。

可以进行多分类吗?

可以的,其实我们可以从二分类问题过度到多分类问题(one vs rest),思路步骤如下:

1.将类型class1看作正样本,其他类型全部看作负样本,然后我们就可以得到样本标记类型为该类型的概率p1。

2.然后再将另外类型class2看作正样本,其他类型全部看作负样本,同理得到p2。

3.以此循环,我们可以得到该待预测样本的标记类型分别为类型class i时的概率pi,最后我们取pi中最大的那个概率对应的样本标记类型作为我们的待预测样本类型。

总之还是以二分类来依次划分,并求出最大概率结果。

逻辑回归有什么优点

  • LR能以概率的形式输出结果,而非只是0,1判定。
  • LR的可解释性强,可控度高(你要给老板讲的嘛…)。
  • 训练快,feature engineering之后效果赞。
  • 因为结果是概率,可以做ranking model。

逻辑回归有哪些应用

  • CTR预估/推荐系统的learning to rank/各种分类场景。
  • 某搜索引擎厂的广告CTR预估基线版是LR。
  • 某电商搜索排序/广告CTR预估基线版是LR。
  • 某电商的购物搭配推荐用了大量LR。
  • 某现在一天广告赚1000w+的新闻app排序基线是LR。

逻辑回归常用的优化方法有哪些

1.一阶方法

梯度下降、随机梯度下降、mini 随机梯度下降降法。随机梯度下降不但速度上比原始梯度下降要快,局部最优化问题时可以一定程度上抑制局部最优解的发生。

2.二阶方法:牛顿法、拟牛顿法:

这里详细说一下牛顿法的基本原理和牛顿法的应用方式。牛顿法其实就是通过切线与x轴的交点不断更新切线的位置,直到达到曲线与x轴的交点得到方程解。在实际应用中我们因为常常要求解凸优化问题,也就是要求解函数一阶导数为0的位置,而牛顿法恰好可以给这种问题提供解决方法。实际应用中牛顿法首先选择一个点作为起始点,并进行一次二阶泰勒展开得到导数为0的点进行一个更新,直到达到要求,这时牛顿法也就成了二阶求解问题,比一阶方法更快。我们常常看到的x通常为一个多维向量,这也就引出了Hessian矩阵的概念(就是x的二阶导数矩阵)。

缺点:牛顿法是定长迭代,没有步长因子,所以不能保证函数值稳定的下降,严重时甚至会失败。还有就是牛顿法要求函数一定是二阶可导的。而且计算Hessian矩阵的逆复杂度很大。

拟牛顿法:不用二阶偏导而是构造出Hessian矩阵的近似正定对称矩阵的方法称为拟牛顿法。拟牛顿法的思路就是用一个特别的表达形式来模拟Hessian矩阵或者是他的逆使得表达式满足拟牛顿条件。主要有DFP法(逼近Hession的逆)、BFGS(直接逼近Hession矩阵)、 L-BFGS(可以减少BFGS所需的存储空间)。

逻辑斯特回归为什么要对特征进行离散化。

  • 非线性!非线性!非线性!逻辑回归属于广义线性模型,表达能力受限;单变量离散化为N个后,每个变量有单独的权重,相当于为模型引入了非线性,能够提升模型表达能力,加大拟合;离散特征的增加和减少都很容易,易于模型的快速迭代;
  • 速度快!速度快!速度快!稀疏向量内积乘法运算速度快,计算结果方便存储,容易扩展;
  • 鲁棒性!鲁棒性!鲁棒性!离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是年龄>30是1,否则0。如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰;
  • 方便交叉与特征组合:离散化后可以进行特征交叉,由M+N个变量变为M*N个变量,进一步引入非线性,提升表达能力;
  • 稳定性:特征离散化后,模型会更稳定,比如如果对用户年龄离散化,20-30作为一个区间,不会因为一个用户年龄长了一岁就变成一个完全不同的人。当然处于区间相邻处的样本会刚好相反,所以怎么划分区间是门学问;
  • 简化模型:特征离散化以后,起到了简化了逻辑回归模型的作用,降低了模型过拟合的风险。

逻辑回归的目标函数中增大L1正则化会是什么结果。

所有的参数w都会变成0。

代码实现:

https://github.com/NLP-LOVE/ML-NLP/blob/master/Machine%20Learning/2.Logistics%20Regression/demo/CreditScoring.ipynb

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-08-23,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI研习社 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
  • 什么是线性回归
  • 能够解决什么样的问题
  • 一般表达式是什么
  • 如何计算
  • 过拟合、欠拟合如何解决
  • 线性回归要求因变量服从正态分布?
  • 代码实现:
  • 什么是逻辑回归
  • 什么是Sigmoid函数
  • 损失函数是什么
  • 可以进行多分类吗?
  • 逻辑回归有什么优点
  • 逻辑回归常用的优化方法有哪些
  • 逻辑斯特回归为什么要对特征进行离散化。
  • 逻辑回归的目标函数中增大L1正则化会是什么结果。
  • 代码实现:
相关产品与服务
NLP 服务
NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档