前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >PyTorch专栏(二)

PyTorch专栏(二)

作者头像
磐创AI
发布2019-09-05 17:53:00
1K0
发布2019-09-05 17:53:00
举报

专栏目录:

第一章:PyTorch之简介与下载

  • PyTorch简介
  • PyTorch环境搭建

第二章:PyTorch之60min入门

第三章:PyTorch之入门强化

  • 数据加载和处理
  • PyTorch小试牛刀
  • 迁移学习
  • 混合前端的seq2seq模型部署
  • 保存和加载模型

第四章:PyTorch之图像篇

  • 微调基于torchvision 0.3的目标检测模型
  • 微调TorchVision模型
  • 空间变换器网络
  • 使用PyTorch进行Neural-Transfer
  • 生成对抗示例
  • 使用ONNX将模型转移至Caffe2和移动端

第五章:PyTorch之文本篇

  • 聊天机器人教程
  • 使用字符级RNN生成名字
  • 使用字符级RNN进行名字分类
  • 在深度学习和NLP中使用Pytorch
  • 使用Sequence2Sequence网络和注意力进行翻译

第六章:PyTorch之生成对抗网络

第七章:PyTorch之强化学习

第二章:PyTorch之60min入门

PyTorch 自动微分

autograd 包是 PyTorch 中所有神经网络的核心。首先让我们简要地介绍它,然后我们将会去训练我们的第一个神经网络。该 autograd 软件包为 Tensors 上的所有操作提供自动微分。它是一个由运行定义的框架,这意味着以代码运行方式定义你的后向传播,并且每次迭代都可以不同。我们从 tensor 和 gradients 来举一些例子。

1、TENSOR

torch.Tensor 是包的核心类。如果将其属性 .requires_grad 设置为 True,则会开始跟踪针对 tensor 的所有操作。完成计算后,您可以调用 .backward() 来自动计算所有梯度。该张量的梯度将累积到 .grad 属性中。

要停止 tensor 历史记录的跟踪,您可以调用 .detach(),它将其与计算历史记录分离,并防止将来的计算被跟踪。

要停止跟踪历史记录(和使用内存),您还可以将代码块使用 with torch.no_grad(): 包装起来。在评估模型时,这是特别有用,因为模型在训练阶段具有 requires_grad = True 的可训练参数有利于调参,但在评估阶段我们不需要梯度。

还有一个类对于 autograd 实现非常重要那就是 Function。Tensor 和 Function 互相连接并构建一个非循环图,它保存整个完整的计算过程的历史信息。每个张量都有一个 .grad_fn 属性保存着创建了张量的 Function 的引用,(如果用户自己创建张量,则g rad_fn 是 None )。

如果你想计算导数,你可以调用 Tensor.backward()。如果 Tensor 是标量(即它包含一个元素数据),则不需要指定任何参数backward(),但是如果它有更多元素,则需要指定一个gradient 参数来指定张量的形状。

import torch

创建一个张量,设置 requires_grad=True 来跟踪与它相关的计算

x = torch.ones(2, 2, requires_grad=True)
print(x)

输出:

tensor([[1., 1.],
        [1., 1.]], requires_grad=True)

针对张量做一个操作

y = x + 2
print(y)

输出:

tensor([[3., 3.],
        [3., 3.]], grad_fn=<AddBackward0>)

y 作为操作的结果被创建,所以它有 grad_fn

print(y.grad_fn)

输出:

<AddBackward0 object at 0x7fe1db427470>

针对 y 做更多的操作:

z = y * y * 3
out = z.mean()

print(z, out)

输出:

tensor([[27., 27.],
        [27., 27.]], grad_fn=<MulBackward0>) tensor(27., grad_fn=<MeanBackward0>)

.requires_grad_(...) 会改变张量的requires_gra 标记。输入的标记默认为False ,如果没有提供相应的参数。

a = torch.randn(2, 2)
a = ((a * 3) / (a - 1))
print(a.requires_grad)
a.requires_grad_(True)
print(a.requires_grad)
b = (a * a).sum()
print(b.grad_fn)

输出:

False
True
<SumBackward0 object at 0x7fe1db427dd8>

梯度:

我们现在后向传播,因为输出包含了一个标量,out.backward() 等同于out.backward(torch.tensor(1.))。

out.backward()

打印梯度 d(out)/dx

print(x.grad)

输出:

tensor([[4.5000, 4.5000],
        [4.5000, 4.5000]])

原理解释:

现在让我们看一个雅可比向量积的例子:

x = torch.randn(3, requires_grad=True)

y = x * 2
while y.data.norm() < 1000:
    y = y * 2

print(y)

输出:

tensor([ -444.6791,   762.9810, -1690.0941], grad_fn=<MulBackward0>)

现在在这种情况下,y 不再是一个标量。torch.autograd 不能够直接计算整个雅可比,但是如果我们只想要雅可比向量积,只需要简单的传递向量给 backward 作为参数。

v = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)
y.backward(v)

print(x.grad)

输出:

tensor([1.0240e+02, 1.0240e+03, 1.0240e-01])

你可以通过将代码包裹在 with torch.no_grad(),来停止对从跟踪历史中 的 .requires_grad=True 的张量自动求导。

print(x.requires_grad)
print((x ** 2).requires_grad)

with torch.no_grad():
    print((x ** 2).requires_grad)

输出:

True
True
False

下载 Python 源代码:

autograd_tutorial.py

下载 Jupyter 源代码:

autograd_tutorial.ipynb

PyTorch神经网络

神经网络可以通过 torch.nn 包来构建。

现在对于自动梯度(autograd)有一些了解,神经网络是基于自动梯度 (autograd)来定义一些模型。一个 nn.Module 包括层和一个方法 forward(input) 它会返回输出(output)。

例如,看一下数字图片识别的网络:

这是一个简单的前馈神经网络,它接收输入,让输入一个接着一个的通过一些层,最后给出输出。

一个典型的神经网络训练过程包括以下几点:

1.定义一个包含可训练参数的神经网络

2.迭代整个输入

3.通过神经网络处理输入

4.计算损失(loss)

5.反向传播梯度到神经网络的参数

6.更新网络的参数,典型的用一个简单的更新方法:weight = weight - learning_rate *gradient

定义神经网络

import torch
import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        # 1 input image channel, 6 output channels, 5x5 square convolution
        # kernel
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        # an affine operation: y = Wx + b
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # Max pooling over a (2, 2) window
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        # If the size is a square you can only specify a single number
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]  # all dimensions except the batch dimension
        num_features = 1
        for s in size:
            num_features *= s
        return num_features


net = Net()
print(net)

输出:

Net(
  (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  (fc1): Linear(in_features=400, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)

你刚定义了一个前馈函数,然后反向传播函数被自动通过 autograd 定义了。你可以使用任何张量操作在前馈函数上。

一个模型可训练的参数可以通过调用 net.parameters() 返回:

params = list(net.parameters())
print(len(params))
print(params[0].size())  # conv1's .weight

输出:

10
torch.Size([6, 1, 5, 5])

让我们尝试随机生成一个 32x32 的输入。注意:期望的输入维度是 32x32 。为了使用这个网络在 MNIST 数据及上,你需要把数据集中的图片维度修改为 32x32。

input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)

输出:

tensor([[-0.0233,  0.0159, -0.0249,  0.1413,  0.0663,  0.0297, -0.0940, -0.0135,
          0.1003, -0.0559]], grad_fn=<AddmmBackward>)

把所有参数梯度缓存器置零,用随机的梯度来反向传播

net.zero_grad()
out.backward(torch.randn(1, 10))

在继续之前,让我们复习一下所有见过的类。

torch.Tensor - A multi-dimensional array with support for autograd operations like backward(). Also holds the gradient w.r.t. the tensor. nn.Module - Neural network module. Convenient way of encapsulating parameters, with helpers for moving them to GPU, exporting, loading, etc. nn.Parameter - A kind of Tensor, that is automatically registered as a parameter when assigned as an attribute to a Module. autograd.Function - Implements forward and backward definitions of an autograd operation. Every Tensor operation, creates at least a single Function node, that connects to functions that created a Tensor and encodes its history.

在此,我们完成了:

1.定义一个神经网络

2.处理输入以及调用反向传播

还剩下:

1.计算损失值

2.更新网络中的权重

损失函数

一个损失函数需要一对输入:模型输出和目标,然后计算一个值来评估输出距离目标有多远。

有一些不同的损失函数在 nn 包中。一个简单的损失函数就是 nn.MSELoss ,这计算了均方误差。

例如:

output = net(input)
target = torch.randn(10)  # a dummy target, for example
target = target.view(1, -1)  # make it the same shape as output
criterion = nn.MSELoss()

loss = criterion(output, target)
print(loss)

输出:

tensor(1.3389, grad_fn=<MseLossBackward>)

现在,如果你跟随损失到反向传播路径,可以使用它的 .grad_fn 属性,你将会看到一个这样的计算图:

input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
      -> view -> linear -> relu -> linear -> relu -> linear
      -> MSELoss
      -> loss

所以,当我们调用 loss.backward(),整个图都会微分,而且所有的在图中的requires_grad=True 的张量将会让他们的 grad 张量累计梯度。

为了演示,我们将跟随以下步骤来反向传播。

print(loss.grad_fn)  # MSELoss
print(loss.grad_fn.next_functions[0][0])  # Linear
print(loss.grad_fn.next_functions[0][0].next_functions[0][0])  # ReLU

输出:

<MseLossBackward object at 0x7fab77615278>
<AddmmBackward object at 0x7fab77615940>
<AccumulateGrad object at 0x7fab77615940>

反向传播

为了实现反向传播损失,我们所有需要做的事情仅仅是使用 loss.backward()。你需要清空现存的梯度,要不然帝都将会和现存的梯度累计到一起。

现在我们调用 loss.backward() ,然后看一下 con1 的偏置项在反向传播之前和之后的变化。

net.zero_grad()     # zeroes the gradient buffers of all parameters

print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)

loss.backward()

print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)

输出:

conv1.bias.grad before backward
tensor([0., 0., 0., 0., 0., 0.])
conv1.bias.grad after backward
tensor([-0.0054,  0.0011,  0.0012,  0.0148, -0.0186,  0.0087])

现在我们看到了,如何使用损失函数。

唯一剩下的事情就是更新神经网络的参数。

更新神经网络参数:

最简单的更新规则就是随机梯度下降。

weight = weight - learning_rate * gradient

我们可以使用 python 来实现这个规则:

learning_rate = 0.01
for f in net.parameters():
    f.data.sub_(f.grad.data * learning_rate)

尽管如此,如果你是用神经网络,你想使用不同的更新规则,类似于 SGD, Nesterov-SGD, Adam, RMSProp, 等。为了让这可行,我们建立了一个小包:torch.optim 实现了所有的方法。使用它非常的简单。

import torch.optim as optim

# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)

# in your training loop:
optimizer.zero_grad()   # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()    # Does the update

下载 Python 源代码:

neural_networks_tutorial.py

下载 Jupyter 源代码:

neural_networks_tutorial.ipynb

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-09-04,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 磐创AI 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 第二章:PyTorch之60min入门
  • PyTorch 自动微分
  • PyTorch神经网络
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档