一次慢查询暴露的隐蔽的问题

最近解决了一个生产 SQL 慢查询的问题,排查问题之后发现一些比较隐匿且容易忽略的问题。

业务背景介绍

最近业务上需要上线一个预警功能,需要查出一段时间内交易,求出当前交易成功率。当成功率低于设定阈值时,短信预警。业务逻辑很简单,测试环境测试也没问题之后,部署上线。实际生产运行时却发现每次 SQL 查询需要花费 60 多秒。

系统架构介绍

Spring boot + Mybatis + Oracle。

需要查询的表数量级为亿级。

排查问题

交易表结构(已经简化)大致如下。

create table TB_TEST
(
  BANK_CODE   VARCHAR2(20),
  CREATE_TIME DATE,
  OID_BILL    NUMBER(16) not null
)
/
create index TB_TEST_CREATE_TIME_INDEX
  on TB_TEST (CREATE_TIME)
/

create unique index TB_TEST_OID_BILL_UINDEX
  on TB_TEST (OID_BILL)
/

alter table TB_TEST
  add constraint TB_TEST_PK
    primary key (OID_BILL)
/

该项目的增删改查语句使用 MybatisGenerate 自动生成,查询语句使用 CREATE_TIME 做为条件查询,自动生成 sql 如下。

select *
from TB_TEST
where CREATE_TIME >= #{start_time}
  and CREATE_TIME < #{end_time};

我们通过设置 Druid 的配置,将具体查询 SQL 日志输出到控制台。具体设置如下。

<bean id="dataSource" class="com.alibaba.druid.pool.DruidDataSource" init-method="init" destroy-method="close">
    ... ...
    <property name="filters" value="stat,slf4j" />
  </bean>

  <!-- logback  -->
    <logger name="druid.sql.Statement" level="DEBUG" additivity="false">
        <appender-ref ref="STDOUT"/>
    </logger>

具体 sql 日志如下:

从日志中我们可以清楚看到实际运行的 SQL,以及查询参数与类型。

从查询语句看来,我们查询条件正确,且由于 CREATE_TIME 存在独立索引,所以查询会走索引,查询速度应该很快,不至于每次查询需要花费 60 多秒。

所以当时猜测这次查询由于某些原因发生了全表扫描,未走索引才导致慢查询。在 Google 搜索相关资料,看见一篇文章 https://www.cnblogs.com/chen--biao/p/9770554.html

根据文章描述的是 Oracle 中存在隐式转换的情况,当类型不匹配的时,Oracle 会主动将类型转换成目标类型。查看我们表结构,CREATE_TIME 为 Date 类型,而根据日志我们查询参数传递的 CREATE_TIME 却为 TIMESTAMP 类型。

所以实际在数据库查询 SQL 如下:

SELECT *
FROM TB_TEST
WHERE (CREATE_TIME >= to_timestamp('2018-03-03 18:45:32', 'yyyy-mm-dd hh24:mi:ss') and
       CREATE_TIME < to_timestamp('2019-01-03 18:45:32', 'yyyy-mm-dd hh24:mi:ss'));

可能这里发生一次隐式转换。

如何证明这个猜想那?我们可以使用 EXPLAIN PLAN ,分析 SQL 执行计划.上面 SQL 执行计划如下。

从上图我们可以从 TB ACCESS FULL 看出,这次查询慢确实由于是全表扫描导致。

然后我们查看执行计划中的 Predicate Information 信息,Oracle 使用 INTERNAL_FUNCATIPON 转换 CREATE_TIME 类型 。从这点那可以看出查询过程索引字段发生一次内联函数转换。

SQL 性能优化往往会有一点,避免在索引字段使用函数。

既然知道原因,那么解决办法也没有这么难了。我们将查询 sql 改为如下就能解决。

select *
from TB_TEST
where CREATE_TIME >= TO_DATE(#{start_time}, 'yyyy-mm-dd hh24:mi:ss')
  and CREATE_TIME < TO_DATE(#{end_time}, 'yyyy-mm-dd hh24:mi:ss');

-- 或者使用 cast 函数
select *
from TB_TEST
where CREATE_TIME >= cast(#{start_time} as date)
  and CREATE_TIME < cast(#{end_time} as date);

分析原因

解决完问题,我们分析下 Java 类型中的 Date 类型为什么最终会转换成 Oracle 中的 TIMESTAMP 类型。

这次案例中我们使用 Mybatis 框架,框架内部会将 Java 数据类型转换成对应的 JDBC 数据类型。查看Mybatis 类型转换 这一节我们可以发现 Java Date 类型将会转换成 java.sql.TIMESTAMP。

然后我们查看 Oracle JDBC 数据类型转换规则。在 https://docs.oracle.com/cd/B19306_01/java.102/b14355/datacc.htm#BHCJBJCC 我们可以看到,TIMESTAMP 将转换成 Oracle 中 TIMESTAMP。

问题扩展

假设我们将 CREATE_TIME 类型修改成 TIMESTAMP,然后查询的时候将 CREATE_TIME 转换成 Date 类型,是否也会发生内联函数转换,然后导致全表扫描那?查询 sql 如下。

--  CREATE_TIME 类型为 TIMESTAMP
select *
from TB_TEST
where CREATE_TIME >= TO_DATE('2018-02-27 19:36:21', 'yyyy-mm-dd hh24:mi:ss')
  and CREATE_TIME < TO_DATE('2018-12-27 19:36:21', 'yyyy-mm-dd hh24:mi:ss')

。。。。

。。。。

。。。。

我们用 EXPLAIN PLAN 分析这个 SQL。

我们可以看到,确实发生了一次内联转化,但是却在另外一边。这次查询走的是索引。

从这个例子我们可以看出,在索引字段上使用函数会导致全表扫描。但是在传入查询参数上使用函数并不会导致索引失效。

总结

1 SQL 查询时需要注意两边数据类型的一致性,虽然数据库隐式转换会帮我们解决数据不一致的问题,但是这种隐式转化带来一些隐蔽问题,让我们第一时间并不能很快发现。所以使用显示转换代替隐式转换。这样我们的 SQL 清晰易懂,而且更加可控。

2 学会使用 EXPLAIN PLAN 分析慢 SQL。

3 索引字段上使用相关函数会导致慢查询,查询时切勿在索引字段上使用函数。

参考文档

1、 https://docs.oracle.com/cd/B19306_01/server.102/b14200/sql_elements002.htm#g195937 2、 https://dev.mysql.com/doc/refman/8.0/en/date-and-time-types.html

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

扫码关注云+社区

领取腾讯云代金券