前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Java并发容器--ConcurrentLinkedQueue

Java并发容器--ConcurrentLinkedQueue

作者头像
在周末
发布2019-09-11 15:52:08
7540
发布2019-09-11 15:52:08
举报
文章被收录于专栏:在周末的专栏在周末的专栏

概述

  ConcurrentLinkedQueue是一种基于链表实现的无界非阻塞线程安全队列,遵循先入先出规则。

  线程安全队列有两种实现方式:

    阻塞方式:对入队和出队操作加锁。阻塞队列。

    非阻塞方式:通过自旋CAS实现。例如:ConcurrentLinkedQueue

  下面从源代码中分析ConcurrentLinkedQueue的实现方法。

类关系图

    从类图可以看出,ConcurrentLinkedQueue有head和tail两个volatile域,节点是用静态内部类Node表示,每个Node含有元素item和指向下一个节点的指针next,都是volatile变量。

源码分析

  Node源码

    Node的item和next两个域都是volatile变量,保证可见性。casItem和casNext方法使用了UNSAFE提供的CAS方法保证操作的原子性。

代码语言:javascript
复制
 1         //Node代码中使用了UNSAFE提供的CAS方法保证操作的原子性,
 2         //UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val); 
 3         //第一个参数表示要更新的对象,第二个参数nextOffset是Field的偏移量,第三个参数表示期望值,最后一个参数更新后的值。若next域的值等于cmp,则把next域更新为val并返回true;否则不更新并返回false。
 4         private static class Node<E> {
 5             volatile E item;    //Node值,volatile保证可见性
 6             volatile Node<E> next;    //Node的下一个元素,volatile保证可见性
 7 
 8             /**
 9              * Constructs a new node.  Uses relaxed write because item can
10              * only be seen after publication via casNext.
11              */
12             Node(E item) {
13                 UNSAFE.putObject(this, itemOffset, item);
14             }
15 
16             boolean casItem(E cmp, E val) {
17                 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
18             }
19 
20             void lazySetNext(Node<E> val) {
21                 UNSAFE.putOrderedObject(this, nextOffset, val);
22             }
23 
24             boolean casNext(Node<E> cmp, Node<E> val) {
25                 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
26             }
27 
28             // Unsafe mechanics
29 
30             private static final sun.misc.Unsafe UNSAFE;
31             private static final long itemOffset;
32             private static final long nextOffset;
33 
34             static {
35                 //初始化UNSAFE和各个域在类中的偏移量
36                 try {
37                     UNSAFE = sun.misc.Unsafe.getUnsafe();//初始化UNSAFE
38                     Class k = Node.class;
39                     //itemOffset是指类中item字段在Node类中的偏移量,先通过反射获取类的item域,然后通过UNSAFE获取item域在内存中相对于Node类首地址的偏移量。
40                     itemOffset = UNSAFE.objectFieldOffset
41                         (k.getDeclaredField("item"));
42                     //nextOffset是指类中next字段在Node类中的偏移量
43                     nextOffset = UNSAFE.objectFieldOffset
44                         (k.getDeclaredField("next"));
45                 } catch (Exception e) {
46                     throw new Error(e);
47                 }
48             }
49         }

    Node类中的lazySetNext(Node<E> val)方法,可以理解为延迟设置Next,内部是使用UNSAFE类的putOrderedObject方法实现,putOrderedXXX方法是putXXXVolatile方法的延迟实现,不保证值的改变被其他线程立即看到。为什么要lazySetNext这个方法呢?其实它是一种低级别的优化手段,就是在不需要让共享变量的修改立刻让其他线程可见的时候,以设置普通变量的方式来修改共享状态,可以减少不必要的内存屏障,从而提高程序执行的效率。

    《Java内存模型中》提到volatile变量可以实现可见性,其原理就是插入内存屏障以保证不会重排序指令,使用的是store-load内存屏障,开销较大。UNSAFE类的putOrderedXXX方法则是在指令中插入StoreStore内存屏障,避免发生写操作重排序,由于StoreStore屏障的性能损耗小于StoreLoad屏障,所以lazySetNext方法比直接写volatile变量的性能要高。需要注意的是,StoreStore屏障仅可以避免写写重排序,不保证内存可见性。

    在出队操作中更新Queue的Head节点时用到了lazySetNext(Node<E> val)方法,将旧head节点的next指向自己。

  初始化

    创建一个空的Queue,head节点为null且tail节点等于head节点。

代码语言:javascript
复制
1             //创建一个空的Queue,head节点为null且tail节点等于head节点
2             public ConcurrentLinkedQueue() {
3                 head = tail = new Node<E>(null);
4         
5             }

  入队

    入队的方法为offer,向队列的尾部插入指定的元素,由于ConcurrentLinkedQueue是无界的,所以offer永远返回true,不能通过返回值来判断是否入队成功。

    入队大致有以下几个步骤:

      1)根据tail节点定位出尾节点(last node);

      2)将新节点置为尾节点的下一个节点;

      3)更新尾节点casTail。

代码语言:javascript
复制
 1         //向队列的尾部插入指定的元素
 2         public boolean offer(E e) {
 3             checkNotNull(e);
 4             final Node<E> newNode = new Node<E>(e);//构造新Node
 5             //循环CAS直到入队成功。1、根据tail节点定位出尾节点(last node);2、将新节点置为尾节点的下一个节点,3、更新尾节点casTail。
 6             for (Node<E> t = tail, p = t;;) {
 7                 Node<E> q = p.next;
 8                 if (q == null) {    //判断p是不是尾节点,tail节点不一定是尾节点,判断是不是尾节点的依据是该节点的next是不是null
 9                     // p is last node
10                     if (p.casNext(null, newNode)) {    
11                     //设置P节点的下一个节点为新节点,如果p的next为null,说明p是尾节点,casNext返回true;如果p的next不为null,说明有其他线程更新过队列的尾节点,casNext返回false。
12                         // Successful CAS is the linearization point
13                         // for e to become an element of this queue,
14                         // and for newNode to become "live".
15                         if (p != t) // hop two nodes at a time
16                             casTail(t, newNode);  // Failure is OK.
17                         return true;
18                     }
19                     // Lost CAS race to another thread; re-read next
20                 }
21                 else if (p == q)
22                     //p节点是null的head节点刚好被出队,更新head节点时h.lazySetNext(h)把旧的head节点指向自己
23                     // We have fallen off list.  If tail is unchanged, it
24                     // will also be off-list, in which case we need to
25                     // jump to head, from which all live nodes are always
26                     // reachable.  Else the new tail is a better bet.
27                     p = (t != (t = tail)) ? t : head;
28                 else
29                     // Check for tail updates after two hops.
30                     p = (p != t && t != (t = tail)) ? t : q;
31                     //判断tail节点有没有被更新,如果没被更新,1)p=q:p指向p.next继续寻找尾节点;
32                     //如果被更新了,2)p=t:P赋值为新的tail节点
33                     //p != t && t != (t = tail)是怎么执行的?见随笔附录《通过字节码指令分析 p != t && t != (t = tail) 语句的执行》
34                     //什么情况下p!=t.只有本分支和else if (p == q)分支含有更新变量p和t的语句,所以在p!=t出现之前已经循环过这两个分支至少一次。
35                     
36             }
37         }
38         
39         private boolean casTail(Node<E> cmp, Node<E> val) {
40             return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
41         }

    需要注意的是:tail不总是尾节点(last node)。DougLea大师为什么这么设计呢?把tail节点永远作为Queue的尾节点实现起来不是更简单吗?

    下面是tail节点永远作为Queue的尾节点的入队方法代码:

代码语言:javascript
复制
 1         public boolean offer(E e) {
 2             if (e == null)
 3                 throw new NullPointerException();
 4             Node<E> n = new Node<E>(e);
 5             for (;;) {
 6                 Node<E> t = tail;
 7                 //此处如果casNext成功,那么casTail可能会成功。因为在这两个原子操作期间,其他线程的casNext操作都会失败,之后的casTail不会被执行,即tail节点不变。
 8                 if (t.casNext(null, n) && casTail(t, n)) {
 9                     return true;
10                 }
11             }
12         }

    这么做的缺点是每次入队都会自旋CAS更新tail节点,入队效率会降低,而DougLea的设计通过hops变量来减少入队时减少更新tail节点的次数,默认情况下hops为1。当tail节点与尾节点的距离大于等于hops值时才更新Queue的tail节点。这样带来的坏处是入队时需要根据tail定位尾节点,hops的值越大,定位时间就越长。DougLea的设计思想是通过增加对volatile变量的读来减少对volatile变量的写,而写操作的开销远远大于读操作。所以从总体上来说入队效率是提升的。

  出队

    和入队相似,出队时也不是每次都会更新head节点,当head节点的item不为null时,直接弹出item;否则会更新head节点。更新head节点成功时,会把旧的head节点指向自己。

代码语言:javascript
复制
 1             public E poll() {
 2                 restartFromHead:
 3                 //两层循环
 4                 for (;;) {
 5                     for (Node<E> h = head, p = h, q;;) {
 6                         E item = p.item;
 7 
 8                         if (item != null && p.casItem(item, null)) {
 9                             // Successful CAS is the linearization point
10                             // for item to be removed from this queue.
11                             if (p != h) // hop two nodes at a time
12                                 updateHead(h, ((q = p.next) != null) ? q : p);
13                             return item;
14                         }
15                         //队列为空,更新head节点
16                         else if ((q = p.next) == null) {
17                             updateHead(h, p);
18                             return null;
19                         }
20                         else if (p == q)
21                             //p节点是null的head节点刚好被出队,更新head节点时h.lazySetNext(h);把旧的head节点指向自己。
22                             //重新从head节点开始
23                             continue restartFromHead;
24                         else
25                             p = q;    //将p执行p的下一个节点
26                     }
27                 }
28             }
29             
30             //更新head节点
31             final void updateHead(Node<E> h, Node<E> p) {
32                 //通过CAS将head更新为P
33                 if (h != p && casHead(h, p))
34                     h.lazySetNext(h);//把旧的head节点指向自己
35             }
36             
37             void lazySetNext(Node<E> val) {
38                 UNSAFE.putOrderedObject(this, nextOffset, val);
39             }

  队列大小

    注意:size()需要遍历队列中的所有元素,时间复杂度为O(n),开销较大。并且如果在遍历的过程中,Queue有入队或出队的操作,会导致该方法统计的结果不准确。所以size()方法不太有用。那如何判断Queue是否为空呢?使用isEmpty()方法,判断第一个节点是否为null,时间复杂度为O(1)

代码语言:javascript
复制
1         public int size() {
2             int count = 0;
3             for (Node<E> p = first(); p != null; p = succ(p))
4                 if (p.item != null)
5                     // Collection.size() spec says to max out
6                     if (++count == Integer.MAX_VALUE)
7                         break;
8             return count;
9         }

附录:通过字节码指令分析 p != t && t != (t = tail) 语句的执行

  在读ConcurrentLinkedQueue源代码时,在入队方法的定位尾节点中读到 p = (p != t && t != (t = tail)) ? t : q; 语句,不太理解 p != t && t != (t = tail) 的执行顺序,遂通过反汇编语句仔细研究一下。

  我们都知道 A && B 运算,在A不满足条件的情况下,B将不会执行。那在字节码指令中是怎么实现的呢?

  通过以下代码模拟:

代码语言:javascript
复制
1             public class Test {
2                 public static void main(String[] args) {
3                     int t = 8;
4                     int p = t;
5                     int tail = 9;
6                     boolean result = (p != t && t != (t = tail));
7                     System.out.println("p=" + p + ", t=" + t + ", result=" + result);
8                 }
9             }

  不出所料,运行结果为p=8, t=8, result=false。t=8说明没有执行t != (t = tail)语句。

  看反汇编后的字节码指令:

代码语言:javascript
复制
 1         public class Test {
 2           public static void main(java.lang.String[] args);
 3              0  bipush 8                //将单字节常量(-128~127)压入栈顶
 4              2  istore_1 [t]            //将栈顶int型数值存入第二个本地变量,即赋值给变量t,同时常量8出栈
 5              3  iload_1 [t]                //将第二个int型本地变量(t)压入栈顶 
 6              4  istore_2 [p]            //将栈顶int型数值存入第三个本地变量,即赋值给变量P,同时t出栈
 7              5  bipush 9                
 8              7  istore_3 [tail]
 9              8  iload_2 [p]
10              9  iload_1 [t]
11             10  if_icmpeq 24            //比较栈顶两int型数值大小,当结果等于0时跳转。即比较p!=t,结果为false(0),跳转到24行,同时p和t出栈
12             13  iload_1 [t]
13             14  iload_3 [tail]
14             15  dup
15             16  istore_1 [t]
16             17  if_icmpeq 24
17             20  iconst_1
18             21  goto 25
19             24  iconst_0                //将int型0压入栈顶。
20             25  istore 4 [result]        //将栈顶int型数值存入指定本地变量。即将result赋值为0(false)
21             27  return
22         }

  接下来再看一下第一个条件成立时的情况。代码将p != t改为p == t:

代码语言:javascript
复制
1             public class Test {
2                 public static void main(String[] args) {
3                     int t = 8;
4                     int p = t;
5                     int tail = 9;
6                     boolean result = (p == t && t != (t = tail));
7                     System.out.println("p=" + p + ", t=" + t + ", result=" + result);
8                 }
9             }

  先来看运行结果p=8, t=9, result=true。说明执行了t != (t = tail)语句。

  看反汇编后的字节码指令:

代码语言:javascript
复制
 1         public class Test {
 2           public static void main(java.lang.String[] args);
 3              0  bipush 8
 4              2  istore_1 [t]
 5              3  iload_1 [t]
 6              4  istore_2 [p]
 7              5  bipush 9
 8              7  istore_3 [tail]
 9              8  iload_2 [p]
10              9  iload_1 [t]
11             10  if_icmpne 24            //比较栈顶两int型数值大小,当结果不等于0时跳转。即比较p == t,结果为true(1)。所以不会跳转到24行,继续执行下一行。
12             13  iload_1 [t]                //将变量t压入栈顶,此时t=8
13             14  iload_3 [tail]            //将变量tail压入栈顶,tail=9
14             15  dup                        //复制栈顶数值并将复制值压入栈顶。即复制tail变量值并压入栈顶,tail=9
15             16  istore_1 [t]            //将栈顶数值存入t变量,同时出栈
16             17  if_icmpeq 24            //比较栈顶两int型数值大小,当结果等于0时跳转。此时栈顶有9、8。比较9!=8,结果为true(1)。所以不会跳转到24行,继续执行下一行。
17             20  iconst_1                //将int型1压入栈顶
18             21  goto 25                    //无条件跳转到25行
19             24  iconst_0
20             25  istore 4 [result]        //将栈顶1存入result,同时出栈。即result返回true
21             27  return
22         }

  通过字节码指令分析可知,编译器是通过if_icmpeq和if_icmpne比较并条件跳转指令实现&&短路与运算的。在第二种情况中,还分析了t != (t = tail)语句的执行过程,理解会更加深入。

参考资料:

  《Java并发编程的艺术》

  ConcurrentLinkedQueue源码分析(http://www.jianshu.com/p/7816c1361439)

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2017-10-24 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 概述
  • 类关系图
  • 源码分析
    •   Node源码
      •   初始化
        •   入队
          •   出队
            •   队列大小
              • 附录:通过字节码指令分析 p != t && t != (t = tail) 语句的执行
              • 参考资料:
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档