语音信号的数字处理课程作业——矢量量化。这里采用了K-means算法,即假设量化种类是已知的,当然也可以采用LBG算法等,不过K-means比较简单。矢量是二维的,可以在平面上清楚的表示出来。
本次实验选择了K-means算法对数据进行矢量量化。算法主要包括以下几个步骤
本实验准备使用MATLAB软件完成矢量量化任务,具体步骤实现如下
图 1 码本中心选择
MATLAB代码如下
1 %% training
2 load('training.dat');
3 scatter(training(:,1),training(:,2));
4 %初始中心选取
5 x_max = max(training(:,1));
6 x_min = min(training(:,1));
7 y_max = max(training(:,2));
8 y_min = min(training(:,2));
9 z1 = [(3*x_min+x_max)/4 (3*y_min+y_max)/4];
10 z2 = [(3*x_max+x_min)/4 (3*y_min+y_max)/4];
11 z3 = [(3*x_min+x_max)/4 (3*y_max+y_min)/4];
12 z4 = [(3*x_max+x_min)/4 (3*y_max+y_min)/4];
13 z = [z1;z2;z3;z4];
14 hold on;
15 scatter(z(:,1),z(:,2));
16 legend('训练数据','码本');grid on;
17 hold off;
18 for k = 1:20
19 %码本分类,欧式距离
20 distancetoz1 = (training - repmat(z1,size(training,1),1)).^2;
21 distancetoz1 = sum(distancetoz1,2);
22 distancetoz2 = (training - repmat(z2,size(training,1),1)).^2;
23 distancetoz2 = sum(distancetoz2,2);
24 distancetoz3 = (training - repmat(z3,size(training,1),1)).^2;
25 distancetoz3 = sum(distancetoz3,2);
26 distancetoz4 = (training - repmat(z4,size(training,1),1)).^2;
27 distancetoz4 = sum(distancetoz4,2);
28 distance = [distancetoz1 distancetoz2 distancetoz3 distancetoz4];
29 % 分类
30 if(classification == (distance == repmat(min(distance,[],2),1,4)))
31 error = mean(min(distance,[],2));
32 break; %如果两次迭代之间没有变化,结束迭代
33 end;
34 classification = (distance == repmat(min(distance,[],2),1,4));
35 c1 = training(classification(:,1),:);
36 c2 = training(classification(:,2),:);
37 c3 = training(classification(:,3),:);
38 c4 = training(classification(:,4),:);
39 figure;scatter(c1(:,1),c1(:,2));hold on;scatter(c2(:,1),c2(:,2));
40 scatter(c3(:,1),c3(:,2));scatter(c4(:,1),c4(:,2));
41 legend('类型1','类型2','类型3','类型4');grid on;hold off;
42 % 码本更新
43 z1 = mean(c1);
44 z2 = mean(c2);
45 z3 = mean(c3);
46 z4 = mean(c4);
47 z = [z1;z2;z3;z4];
48 end
49 %% Test
50 load('to_be_quantized.dat')
51 distancetoz1 = (to_be_quantized - repmat(z1,size(to_be_quantized,1),1)).^2;
52 distancetoz1 = sum(distancetoz1,2);
53 distancetoz2 = (to_be_quantized - repmat(z2,size(to_be_quantized,1),1)).^2;
54 distancetoz2 = sum(distancetoz2,2);
55 distancetoz3 = (to_be_quantized - repmat(z3,size(to_be_quantized,1),1)).^2;
56 distancetoz3 = sum(distancetoz3,2);
57 distancetoz4 = (to_be_quantized - repmat(z4,size(to_be_quantized,1),1)).^2;
58 distancetoz4 = sum(distancetoz4,2);
59 distance = [distancetoz1 distancetoz2 distancetoz3 distancetoz4];
60 testerror = mean(min(distance,[],2));
61
62 classification = (distance == repmat(min(distance,[],2),1,4));
63 c1 = to_be_quantized(classification(:,1),:);
64 c2 = to_be_quantized(classification(:,2),:);
65 c3 = to_be_quantized(classification(:,3),:);
66 c4 = to_be_quantized(classification(:,4),:);
67 figure;scatter(c1(:,1),c1(:,2));hold on;scatter(c2(:,1),c2(:,2));
68 scatter(c3(:,1),c3(:,2));scatter(c4(:,1),c4(:,2));
69 legend('类型1','类型2','类型3','类型4');grid on;hold off;
图 2 训练码本分布
图 3第一次迭代结果 图 4第四次迭代结果
图 5第八次迭代结果 图 6第九次迭代结果
图 2展示了训练数据的分布,图 3~6是迭代过程中分类的变化情况,迭代完成后的码本为
training.dat
1 8.4416189e+000 -7.9885975e-001
2 1.1480908e+000 7.8735044e+000
3 7.7380144e+000 -1.2165061e+000
4 8.9727144e-001 7.3962468e+000
5 7.5343823e+000 -1.1424504e+000
6 -6.9234039e-001 -1.7096610e+000
7 7.6418740e+000 -1.3563792e+000
8 3.1091418e+000 6.3850541e+000
9 2.3482174e+000 4.7553506e-001
10 -1.3840364e+000 -2.5480394e+000
11 8.2008897e+000 -1.1448387e+000
12 -1.1392497e+000 -2.0809884e+000
13 3.7970116e+000 1.6906469e+000
14 3.4484200e+000 1.3980911e+000
15 2.5701485e+000 5.3755044e+000
16 8.3899076e+000 -6.6675309e-001
17 2.0146545e+000 5.6984592e+000
18 1.8853328e+000 5.2762628e-001
19 5.6781432e+000 3.2588691e+000
20 1.0102480e+000 5.8167707e+000
21 7.7302763e+000 -1.2030348e+000
22 4.2118845e+000 1.6527181e+000
23 4.3920049e-001 6.7168970e+000
24 8.1934984e-001 -5.1917945e-001
25 4.3708769e+000 2.1613573e+000
26 1.8569681e+000 4.8380565e+000
27 3.4732504e+000 1.7953635e+000
28 7.5822756e+000 -1.1521814e+000
29 2.6434078e+000 6.3295690e+000
30 1.9968582e+000 7.3529314e+000
31 4.0833513e+000 1.4936002e+000
32 3.6767894e+000 6.7446912e+000
33 1.3524515e+000 6.8177858e+000
34 3.9711504e+000 1.5452503e+000
35 1.5594711e+000 6.3885281e+000
36 3.4692089e+000 1.7118124e+000
37 5.2575491e+000 2.5601553e+000
38 7.8827882e+000 -6.8867840e-001
39 4.8176593e+000 2.1684005e+000
40 2.7402486e+000 8.3320174e+000
41 2.2549011e+000 3.9393641e-001
42 8.0840542e+000 -7.3155184e-001
43 8.8753667e-001 6.1607892e+000
44 1.8067727e+000 -2.1099454e-001
45 6.8650914e+000 4.4228389e+000
46 6.4174056e+000 3.7590081e+000
47 4.0933273e+000 1.3598676e+000
48 2.2882999e+000 5.1876795e-001
49 7.9225523e+000 -1.1725456e+000
50 4.3561335e+000 1.8976163e+000
51 8.3279098e+000 -1.0232899e+000
52 6.2551331e+000 3.3449949e+000
53 3.1276024e+000 7.8463356e-001
54 6.5241605e+000 3.4561490e+000
55 4.1588140e-001 6.4974858e+000
56 2.7379263e+000 6.4746080e+000
57 7.2185639e+000 -1.3525589e+000
58 7.5424890e+000 -1.5317814e+000
59 3.7468423e+000 1.6110753e+000
60 8.8708536e+000 -5.6439331e-001
61 7.6960713e+000 -1.1960633e+000
62 7.5979552e+000 -1.1469059e+000
63 2.8220978e+000 1.0360184e+000
64 3.8165165e+000 1.6082223e+000
65 6.6799248e-002 -1.2910367e+000
66 2.3054028e+000 2.8450986e-001
67 4.2788715e+000 5.1995858e+000
68 3.0006534e+000 9.1250414e-001
69 7.6051326e+000 -1.1005476e+000
70 2.5331653e+000 9.7428007e-001
71 1.0743104e+000 6.0859296e+000
72 6.7237149e-001 8.6117274e+000
73 2.4333003e+000 7.1421389e-001
74 1.7723473e+000 7.1841833e+000
75 3.5762796e+000 1.5348648e+000
76 2.7863558e+000 7.3565043e-001
77 8.0284284e+000 -7.9636983e-001
78 8.4672682e+000 -8.2062254e-001
79 2.3519727e+000 8.1632796e-001
80 7.4240720e+000 4.1800229e+000
81 1.9724319e+000 4.4328699e-001
82 7.7622621e+000 -1.3506605e+000
83 2.3793018e+000 -4.3107386e-001
84 3.2455220e+000 1.2697488e+000
85 1.3644859e+000 5.9712644e+000
86 5.4815655e+000 2.6608754e+000
87 -1.2002073e+000 -2.1765731e+000
88 -3.5558595e-001 6.4387512e+000
89 3.9418185e+000 1.9858047e+000
90 1.0533626e+000 -7.9068285e-001
91 1.9560213e+000 6.2001316e+000
92 7.5555203e+000 -1.2087337e+000
93 1.7851705e+000 7.0073148e+000
94 2.2736274e+000 7.9336349e-001
95 7.6615799e+000 -1.0445564e+000
96 2.7181608e+000 4.7615418e-001
97 1.8291149e+000 -6.7261971e-001
98 7.8640867e+000 -1.4296092e+000
99 2.6362814e+000 5.8303048e-001
100 3.7771102e+000 1.2928196e+000
101 7.5360359e+000 -9.7942712e-001
102 4.0257498e+000 1.2217666e+000
103 8.4500853e+000 -7.6599648e-001
104 3.0488646e+000 6.2159289e+000
105 2.0954150e+000 2.5848825e-001
106 1.6592148e+000 7.5650162e+000
107 3.5535363e+000 1.3326217e+000
108 4.3388636e+000 2.1235893e+000
109 3.1233524e+000 1.3971470e+000
110 7.6317385e+000 -1.0744610e+000
111 8.5028402e-001 -3.2822876e-001
112 8.6903131e+000 -2.6843242e-001
113 4.4418011e+000 2.5676053e+000
114 2.5119872e+000 -1.0521242e-001
115 1.9613752e+000 7.0072931e+000
116 3.2607143e+000 1.5432286e+000
117 3.2830401e+000 1.0228031e+000
118 8.0201528e+000 -7.0827461e-001
119 3.1597313e+000 7.6750043e+000
120 9.0059933e+000 -9.6130246e-001
121 1.1037820e+000 -1.2980812e-001
122 1.5334911e+000 7.4282719e+000
123 6.0948533e-001 6.3861341e+000
124 4.0065706e-001 -1.1015776e+000
125 2.3451558e+000 8.6384057e+000
126 1.4490876e+000 8.6646066e+000
127 8.0421821e+000 -8.1100509e-001
128 8.0175747e+000 -5.6119093e-001
to_be_quantized
1 3.7682247e+000 8.3609865e-001
2 2.6963398e+000 6.5766226e-001
3 3.3438207e+000 1.2495321e+000
4 1.3646195e+000 -6.3947640e-001
5 7.8227583e+000 -8.8616996e-001
6 1.3532508e+000 7.6607304e+000
7 2.2741739e+000 6.9387226e+000
8 3.5361382e+000 5.9729821e+000
9 8.0409138e+000 -1.1234886e+000
10 7.9630460e+000 -1.3032200e+000
11 2.3478158e+000 6.9759690e+000
12 3.2632942e+000 1.5675470e+000
13 1.5241488e+000 7.1053147e+000
14 5.7320838e+000 3.4042655e+000
15 2.3339411e+000 6.9428434e+000
16 6.5330392e+000 3.4415860e+000
17 3.1068803e+000 8.0080363e+000
18 7.4078126e+000 -1.3416027e+000
19 1.9925474e+000 -2.7782790e-001
20 5.0187915e+000 2.7058427e+000
21 2.6535497e-001 -1.2622069e+000
22 1.4960584e+000 6.3355004e+000
23 3.1933474e-001 7.1467466e+000
24 8.2821020e+000 -9.5178778e-001
25 2.5653586e+000 6.9836115e+000
26 3.6937139e+000 1.1535671e+000
27 8.5390043e+000 -5.0678923e-001
28 7.5436898e-001 -6.7669379e-001
29 2.1638213e+000 7.6142401e+000
30 4.8522826e+000 2.7079076e+000
31 5.4890641e+000 3.3875394e+000
32 4.2525899e+000 1.8861744e+000
33 8.4088615e+000 -1.1920963e+000
34 5.5396960e+000 2.9680110e+000
35 3.3334381e+000 1.4384861e+000
36 3.5212919e+000 1.0327602e+000
37 4.6303492e+000 2.1627805e+000
38 3.9385929e+000 1.0010804e+000
39 8.4553633e+000 -7.2297277e-001
40 1.8111095e+000 7.6132396e+000
41 1.1240984e+000 -2.7029879e-001
42 -3.3840083e-002 -1.5590834e+000
43 7.1674870e+000 -1.5449905e+000
44 8.5103026e+000 -9.8820393e-001
45 7.7529857e+000 -1.4787432e+000
46 1.8704913e+000 6.9370116e+000
47 6.0271939e+000 3.2118915e+000
48 2.8287461e+000 7.3399383e+000
49 4.1568876e+000 1.5631238e+000
50 8.2187067e-001 -5.8546437e-001
51 3.1084965e+000 5.3512449e+000
52 4.1581386e+000 2.1763345e+000
53 3.2267474e+000 1.4105815e+000
54 8.1564752e-001 7.2540175e+000
55 8.0241402e+000 -8.2411742e-001
56 6.2773554e+000 3.1729045e+000
57 8.5460058e+000 -1.0330056e+000
58 8.6215210e+000 -7.4057378e-001
59 7.4872291e+000 -1.0113921e+000
60 3.3155133e+000 9.7636038e-001
61 2.1051593e+000 3.4894654e-001
62 3.6776134e+000 1.5387928e+000
63 2.9009105e+000 5.6931589e+000
64 8.0567164e+000 -1.0000803e+000