前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >PyTorch专栏(七):模型保存与加载那些事

PyTorch专栏(七):模型保存与加载那些事

作者头像
磐创AI
发布于 2019-09-17 09:05:56
发布于 2019-09-17 09:05:56
8.4K00
代码可运行
举报
运行总次数:0
代码可运行

作者 | News

编辑 | 安可

出品 | 磐创AI团队出品

【磐创AI 导读】:本篇文章讲解了PyTorch专栏的第三章中的保存和加载模型。查看专栏历史文章,请点击下方蓝色字体进入相应链接阅读。查看关于本专栏的介绍:PyTorch专栏开篇

专栏目录:

第一章:PyTorch之简介与下载

  • PyTorch简介
  • PyTorch环境搭建

第二章:PyTorch之60分钟入门

第三章:PyTorch之入门强化

第四章:PyTorch之图像篇

  • 微调基于torchvision 0.3的目标检测模型
  • 微调TorchVision模型
  • 空间变换器网络
  • 使用PyTorch进行神经传递
  • 生成对抗示例
  • 使用ONNX将模型转移至Caffe2和移动端

第五章:PyTorch之文本篇

  • 聊天机器人教程
  • 使用字符级RNN生成名字
  • 使用字符级RNN进行名字分类
  • 深度学习和NLP中使用Pytorch
  • 使用Sequence2Sequence网络和注意力进行翻译

第六章:PyTorch之生成对抗网络

第七章:PyTorch之强化学习

当保存和加载模型时,需要熟悉三个核心功能:

  1. torch.save:将序列化对象保存到磁盘。此函数使用Pythonpickle模块进行序列化。使用此函数可以保存如模型、tensor、字典等各种对象。
  2. torch.load:使用pickle的unpickling功能将pickle对象文件反序列化到内存。此功能还可以有助于设备加载数据。
  3. torch.nn.Module.load_state_dict:使用反序列化函数 state_dict 来加载模型的参数字典。

1.什么是状态字典:state_dict?

在PyTorch中,torch.nn.Module模型的可学习参数(即权重和偏差)包含在模型的参数中,(使用model.parameters()可以进行访问)。 state_dict是Python字典对象,它将每一层映射到其参数张量。注意,只有具有可学习参数的层(如卷积层,线性层等)的模型 才具有state_dict这一项。目标优化torch.optim也有state_dict属性,它包含有关优化器的状态信息,以及使用的超参数。

因为state_dict的对象是Python字典,所以它们可以很容易的保存、更新、修改和恢复,为PyTorch模型和优化器添加了大量模块。

下面通过从简单模型训练一个分类器中来了解一下state_dict的使用。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 定义模型
class TheModelClass(nn.Module):
    def __init__(self):
        super(TheModelClass, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 初始化模型
model = TheModelClass()

# 初始化优化器
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

# 打印模型的状态字典
print("Model's state_dict:")
for param_tensor in model.state_dict():
    print(param_tensor, "\t", model.state_dict()[param_tensor].size())

# 打印优化器的状态字典
print("Optimizer's state_dict:")
for var_name in optimizer.state_dict():
    print(var_name, "\t", optimizer.state_dict()[var_name])
  • 输出
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
Model's state_dict:
conv1.weight     torch.Size([6, 3, 5, 5])
conv1.bias   torch.Size([6])
conv2.weight     torch.Size([16, 6, 5, 5])
conv2.bias   torch.Size([16])
fc1.weight   torch.Size([120, 400])
fc1.bias     torch.Size([120])
fc2.weight   torch.Size([84, 120])
fc2.bias     torch.Size([84])
fc3.weight   torch.Size([10, 84])
fc3.bias     torch.Size([10])

Optimizer's state_dict:
state    {}
param_groups     [{'lr': 0.001, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [4675713712, 4675713784, 4675714000, 4675714072, 4675714216, 4675714288, 4675714432, 4675714504, 4675714648, 4675714720]}]

2.保存和加载推理模型

2.1 保存/加载state_dict(推荐使用)

  • 保存
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
torch.save(model.state_dict(), PATH)
  • 加载
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH))
model.eval()

当保存好模型用来推断的时候,只需要保存模型学习到的参数,使用torch.save()函数来保存模型state_dict,它会给模型恢复提供 最大的灵活性,这就是为什么要推荐它来保存的原因。

在 PyTorch 中最常见的模型保存使‘.pt’或者是‘.pth’作为模型文件扩展名。

请记住,在运行推理之前,务必调用model.eval()去设置 dropout 和 batch normalization 层为评估模式。如果不这么做,可能导致 模型推断结果不一致。

  • 注意

load_state_dict()函数只接受字典对象,而不是保存对象的路径。这就意味着在你传给load_state_dict()函数之前,你必须反序列化 你保存的state_dict。例如,你无法通过 model.load_state_dict(PATH)来加载模型。

2.2 保存/加载完整模型

  • 保存
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
torch.save(model, PATH)
  • 加载
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 模型类必须在此之前被定义
model = torch.load(PATH)
model.eval()

此部分保存/加载过程使用最直观的语法并涉及最少量的代码。以 Python `pickle 模块的方式来保存模型。这种方法的缺点是序列化数据受 限于某种特殊的类而且需要确切的字典结构。这是因为pickle无法保存模型类本身。相反,它保存包含类的文件的路径,该文件在加载时使用。 因此,当在其他项目使用或者重构之后,您的代码可能会以各种方式中断。

在 PyTorch 中最常见的模型保存使用‘.pt’或者是‘.pth’作为模型文件扩展名。

请记住,在运行推理之前,务必调用model.eval()设置 dropout 和 batch normalization 层为评估模式。如果不这么做,可能导致模型推断结果不一致。

3. 保存和加载 Checkpoint 用于推理/继续训练

  • 保存
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
torch.save({
            'epoch': epoch,
            'model_state_dict': model.state_dict(),
            'optimizer_state_dict': optimizer.state_dict(),
            'loss': loss,
            ...
            }, PATH)
  • 加载
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
model = TheModelClass(*args, **kwargs)
optimizer = TheOptimizerClass(*args, **kwargs)

checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']

model.eval()
# - or -
model.train()

当保存成 Checkpoint 的时候,可用于推理或者是继续训练,保存的不仅仅是模型的 state_dict 。保存优化器的 state_dict 也很重要, 因为它包含作为模型训练更新的缓冲区和参数。你也许想保存其他项目,比如最新记录的训练损失,外部的torch.nn.Embedding层等等。

要保存多个组件,请在字典中组织它们并使用torch.save()来序列化字典。PyTorch 中常见的保存checkpoint 是使用 .tar 文件扩展名。

要加载项目,首先需要初始化模型和优化器,然后使用torch.load()来加载本地字典。这里,你可以非常容易的通过简单查询字典来访问你所保存的项目。

请记住在运行推理之前,务必调用model.eval()去设置 dropout 和 batch normalization 为评估。如果不这样做,有可能得到不一致的推断结果。 如果你想要恢复训练,请调用model.train()以确保这些层处于训练模式。

4. 在一个文件中保存多个模型

  • 保存
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
torch.save({
            'modelA_state_dict': modelA.state_dict(),
            'modelB_state_dict': modelB.state_dict(),
            'optimizerA_state_dict': optimizerA.state_dict(),
            'optimizerB_state_dict': optimizerB.state_dict(),
            ...
            }, PATH)
  • 加载
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
modelA = TheModelAClass(*args, **kwargs)
modelB = TheModelBClass(*args, **kwargs)
optimizerA = TheOptimizerAClass(*args, **kwargs)
optimizerB = TheOptimizerBClass(*args, **kwargs)

checkpoint = torch.load(PATH)
modelA.load_state_dict(checkpoint['modelA_state_dict'])
modelB.load_state_dict(checkpoint['modelB_state_dict'])
optimizerA.load_state_dict(checkpoint['optimizerA_state_dict'])
optimizerB.load_state_dict(checkpoint['optimizerB_state_dict'])

modelA.eval()
modelB.eval()
# - or -
modelA.train()
modelB.train()

当保存一个模型由多个torch.nn.Modules组成时,例如GAN(对抗生成网络)、sequence-to-sequence (序列到序列模型), 或者是多个模 型融合, 可以采用与保存常规检查点相同的方法。换句话说,保存每个模型的 state_dict 的字典和相对应的优化器。如前所述,可以通 过简单地将它们附加到字典的方式来保存任何其他项目,这样有助于恢复训练。

PyTorch 中常见的保存 checkpoint 是使用 .tar 文件扩展名。

要加载项目,首先需要初始化模型和优化器,然后使用torch.load()来加载本地字典。这里,你可以非常容易的通过简单查询字典来访问你所保存的项目。

请记住在运行推理之前,务必调用model.eval()去设置 dropout 和 batch normalization 为评估。如果不这样做,有可能得到不一致的推断结果。 如果你想要恢复训练,请调用model.train()以确保这些层处于训练模式。

5. 使用在不同模型参数下的热启动模式

  • 保存
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
torch.save(modelA.state_dict(), PATH)
  • 加载
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
modelB = TheModelBClass(*args, **kwargs)
modelB.load_state_dict(torch.load(PATH), strict=False)

在迁移学习或训练新的复杂模型时,部分加载模型或加载部分模型是常见的情况。利用训练好的参数,有助于热启动训练过程,并希望帮助你的模型比从头开始训练能够更快地收敛。

无论是从缺少某些键的 state_dict 加载还是从键的数目多于加载模型的 state_dict , 都可以通过在load_state_dict()函数中将strict参数设置为 False 来忽略非匹配键的函数。

如果要将参数从一个层加载到另一个层,但是某些键不匹配,主要修改正在加载的 state_dict 中的参数键的名称以匹配要在加载到模型中的键即可。

6. 通过设备保存/加载模型

6.1 保存到 CPU、加载到 CPU

  • 保存
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
torch.save(model.state_dict(), PATH)
  • 加载
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
device = torch.device('cpu')
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH, map_location=device))

当从CPU上加载模型在GPU上训练时, 将torch.device('cpu')传递给torch.load()函数中的map_location参数.在这种情况下,使用 map_location参数将张量下的存储器动态的重新映射到CPU设备。

6.2 保存到 GPU、加载到 GPU

  • 保存
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
torch.save(model.state_dict(), PATH)
  • 加载
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
device = torch.device("cuda")
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH))
model.to(device)
# 确保在你提供给模型的任何输入张量上调用input = input.to(device)

当在GPU上训练并把模型保存在GPU,只需要使用model.to(torch.device('cuda')),将初始化的 model 转换为 CUDA 优化模型。另外,请 务必在所有模型输入上使用.to(torch.device('cuda'))函数来为模型准备数据。请注意,调用my_tensor.to(device)会在GPU上返回my_tensor的副本。 因此,请记住手动覆盖张量:my_tensor= my_tensor.to(torch.device('cuda'))

6.3 保存到 CPU,加载到 GPU

  • 保存
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
torch.save(model.state_dict(), PATH)
  • 加载
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
device = torch.device("cuda")
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH, map_location="cuda:0"))  # Choose whatever GPU device number you want
model.to(device)
# 确保在你提供给模型的任何输入张量上调用input = input.to(device)

在CPU上训练好并保存的模型加载到GPU时,将torch.load()函数中的map_location参数设置为cuda:device_id。这会将模型加载到 指定的GPU设备。接下来,请务必调用model.to(torch.device('cuda'))将模型的参数张量转换为 CUDA 张量。最后,确保在所有模型输入上使用 .to(torch.device('cuda'))函数来为CUDA优化模型。请注意,调用my_tensor.to(device)会在GPU上返回my_tensor的新副本。它不会覆盖my_tensor。 因此, 请手动覆盖张量my_tensor = my_tensor.to(torch.device('cuda'))

6.4 保存 torch.nn.DataParallel 模型

  • 保存
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
torch.save(model.module.state_dict(), PATH)
  • 加载
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 加载任何你想要的设备

torch.nn.DataParallel是一个模型封装,支持并行GPU使用。要普通保存 DataParallel 模型, 请保存model.module.state_dict()。 这样,你就可以非常灵活地以任何方式加载模型到你想要的设备中。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-09-12,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 磐创AI 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
PyTorch常用代码段整理合集分享
PyTorch 将被安装在 anaconda3/lib/python3.7/site-packages/torch/目录下。
商业新知
2019/05/30
1.6K0
PyTorch常用代码段整理合集分享
pytorch加载和保存模型
方法一(推荐):第一种方法也是官方推荐的方法,只保存和恢复模型中的参数。保存    torch.save(the_model.state_dict(), PATH)恢复the_model = TheModelClass(*args, **kwargs)the_model.load_state_dict(torch.load(PATH))使用这种方法,我们需要自己导入模型的结构信息。方法二:使用这种方法,将会保存模型的参数和结构信息。保存torch.save(the_model, PATH)恢复the_mod
狼啸风云
2020/05/04
2.7K0
用Pytorch自建6层神经网络训练Fashion-MNIST数据集,测试准确率达到 92%
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
Frank909
2019/09/18
3.3K0
用Pytorch自建6层神经网络训练Fashion-MNIST数据集,测试准确率达到 92%
state_dict详解
在pytorch中,torch.nn.Module模块中的state_dict变量存放训练过程中需要学习的权重和偏执系数,state_dict作为python的字典对象将每一层的参数映射成tensor张量,需要注意的是torch.nn.Module模块中的state_dict只包含卷积层和全连接层的参数,当网络中存在batchnorm时,例如vgg网络结构,torch.nn.Module模块中的state_dict也会存放batchnorm's running_mean。
狼啸风云
2020/06/08
7340
全面解析Pytorch框架下模型存储,加载以及冻结
最近在做试验中遇到了一些深度网络模型加载以及存储的问题,因此整理了一份比较全面的在 PyTorch 框架下有关模型的问题。首先咱们先定义一个网络来进行后续的分析:
呆呆
2021/07/05
7160
Pytorch 最全入门介绍,Pytorch入门看这一篇就够了
本文通过详细且实践性的方式介绍了 PyTorch 的使用,包括环境安装、基础知识、张量操作、自动求导机制、神经网络创建、数据处理、模型训练、测试以及模型的保存和加载。
TechLead
2023/10/21
6.5K0
Pytorch 最全入门介绍,Pytorch入门看这一篇就够了
PyTorch模型的保存加载
我们平时在神经网络的训练时间可能会很长,为了在每次使用模型时避免高代价的重复训练,我们就需要将模型序列化到磁盘中,使用的时候反序列化到内存中。
@小森
2024/05/06
3960
PyTorch模型的保存加载
源码详解Pytorch的state_dict和load_state_dict
model.state_dict()其实返回的是一个OrderDict,存储了网络结构的名字和对应的参数,下面看看源代码如何实现的。
marsggbo
2020/06/12
4.1K0
教程 | PyTorch经验指南:技巧与陷阱
项目地址:https://github.com/Kaixhin/grokking-pytorch
机器之心
2018/08/07
1.5K0
教程 | PyTorch经验指南:技巧与陷阱
2021-05-25
作用:用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。
Hi0703
2021/05/27
5690
用 PyTorch 从零创建 CIFAR-10 的图像分类器神经网络,并将测试准确率达到 85%
一般,深度学习的教材或者是视频,作者都会通过 MNIST 这个数据集,讲解深度学习的效果,但这个数据集太小了,而且是单色图片,随便弄些模型就可以取得比较好的结果,但如果我们不满足于此,想要训练一个神经网络来对彩色图像进行分类,可以不可以呢?
Frank909
2019/01/14
10.1K0
PyTorch 的 10 条内部用法
欢迎阅读这份有关 PyTorch 原理的简明指南[1]。无论您是初学者还是有一定经验,了解这些原则都可以让您的旅程更加顺利。让我们开始吧!
数据科学工厂
2023/12/14
2480
PyTorch 的 10 条内部用法
pytorch中读取模型权重数据、保存数据方法总结
pytorch中保存数据策略在长时间的深度训练中有很大的作用,我们可以通过保存训练好的权重,然后等到下次使用的时候再取出来。另外我们也可以通过迁移学习使用别人训练好的数据进行训练。达到事半功百的效果。
老潘
2018/06/21
26.3K0
pytorch中读取模型权重数据、保存数据方法总结
一文搞懂 PyTorch 中的 torch.nn模块 !!
在深度学习领域,PyTorch是一个非常流行的框架,而 torch.nn 模块是PyTorch中用于构建神经网络的核心模块。
JOYCE_Leo16
2024/10/19
1.8K0
一文搞懂 PyTorch 中的 torch.nn模块 !!
什么是 Stable Diffusion 模型的 Checkpoint 文件?
在机器学习领域,特别是深度学习中,Checkpoint 文件是一个重要的概念,它保存了模型的权重参数和优化器的状态,以便后续继续训练或用于推理任务。
编程小妖女
2025/01/19
1230
什么是 Stable Diffusion 模型的 Checkpoint 文件?
9大PyTorch最重要的操作 !!
PyTorch的张量类似于Numpy数组,但它们提供了GPU加速和自动求导的功能。张量的创建可以通过torch.Tensor,也可以使用torch.zeros、torch.ones等函数。
JOYCE_Leo16
2024/03/19
1300
解析 Stable Diffusion 模型的 Checkpoint 文件
在机器学习领域,特别是深度学习中,Checkpoint 文件是一个重要的概念,它保存了模型的权重参数和优化器的状态,以便后续继续训练或用于推理任务。对于 Stable Diffusion(以下简称 SD)模型来说,Checkpoint 文件尤为重要,因为其结构和内容直接决定了模型的功能和性能表现。
编程小妖女
2025/01/14
1480
【Pytorch】模型摘要信息获取、模型参数获取及模型保存的三种方法
PyTorch Summary是一个用于计算模型参数量和输出尺寸的工具库。它可以帮助你快速了解模型的结构和参数数量,以及每个层的输出形状。你可以使用torchsummary库来生成模型的摘要信息。以下是一个示例代码:
码科智能
2023/10/17
2.2K0
02-快速入门:使用PyTorch进行机器学习和深度学习的基本工作流程(笔记+代码)
我们将得到 torch 、 torch.nn ( nn 代表神经网络,这个包包含在 PyTorch 中创建神经网络的构建块)和 matplotlib 。
renhai
2023/11/24
1.7K0
02-快速入门:使用PyTorch进行机器学习和深度学习的基本工作流程(笔记+代码)
【深度学习】Pytorch 教程(十五):PyTorch数据结构:7、模块(Module)详解(自定义神经网络模型并训练、评估)
  Tensor(张量)是PyTorch中用于表示多维数据的主要数据结构,类似于多维数组,可以存储和操作数字数据。
Qomolangma
2024/07/30
4520
【深度学习】Pytorch 教程(十五):PyTorch数据结构:7、模块(Module)详解(自定义神经网络模型并训练、评估)
推荐阅读
相关推荐
PyTorch常用代码段整理合集分享
更多 >
LV.0
深圳魔图互联科技有限公司算法工程师
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档