专栏首页Node开发Redis缓存击穿、缓存穿透、缓存雪崩

Redis缓存击穿、缓存穿透、缓存雪崩

上篇文章谈到了Redis分布式锁,实际上就是为了解释为什么做缓存采用Redis而不使用map/guava。缓存分为本地缓存和分布式缓存。以 Java 为例,使用自带的 map /guava 实现的是本地缓存,最主要的特点是轻量以及快速,生命周期随着 JVM 的销毁而结束。而且在多实例状态下缓存不具有唯一性。使用 Redis 作缓存称为分布式缓存,在多实例状态下共用一份缓存数据,缓存具有一致性。所以说在分布式下最合适的缓存方案就是采用Redis实现分布式缓存。

本篇文章主要谈谈Redis中很容易出现的三大问题现象:缓存击穿、缓存穿透以及缓存雪崩。不过在介绍这三个问题现象之前,我们首先需要先来了解下Rediskey的过期淘汰机制。众所周知,Redis可以对存储在Redis中的缓存数据设置过期时间,比如我们获取的短信验证码一般十分钟过期,我们这时候就需要在验证码存进Redis时添加一个key的过期时间,但是这里有一个需要格外注意的问题就是:并非key过期时间到了就一定会被Redis给删除。那么Redis是如何做到对过期key进行删除呢?Redis中对于过期key的删除分为两种策略:定期删除和惰性删除。

  • 定期删除:Redis 默认是每隔 100ms 就随机抽取一些设置了过期时间的 Key,检查其是否过期,如果过期就删除。为什么是随机抽取而不是检查所有key?因为你如果设置的key成千上万,每100毫秒都将所有存在的key检查一遍,会给CPU带来比较大的压力。
  • 惰性删除 :定期删除由于是随机抽取可能会导致很多过期 Key 到了过期时间并没有被删除。所以用户在从缓存获取数据的时候,redis会检查这个key是否过期了,如果过期就删除这个key。这时候就会在查询的时候将过期key从缓存中清除。

但是如果仅仅使用定期删除 + 惰性删除机制还是会留下一个严重的隐患:如果定期删除留下了很多已经过期的key,而且用户长时间都没有使用过这些过期key,导致过期key无法被惰性删除,从而导致过期key一直堆积在内存里,最终造成Redis内存块被消耗殆尽。那这个问题如何解决呢?这个时候Redis内存淘汰机制应运而生了。Redis内存淘汰机制提供了6种数据淘汰策略:

  • volatile-lru:从已设置过期时间的数据集中挑选最近最少使用的数据淘汰。
  • volatile-ttl:从已设置过期时间的数据集中挑选将要过期的数据淘汰。
  • volatile-random:从已设置过期时间的数据集中任意选择数据淘汰。
  • allkeys-lru:当内存不足以容纳新写入数据时移除最近最少使用的key。
  • allkeys-random:从数据集中任意选择数据淘汰。
  • no-enviction:当内存不足以容纳新写入数据时,新写入操作会报错。

一般情况下,推荐使用volatile-lru策略,对于配置信息等重要数据,不应该设置过期时间,这样Redis就永远不会淘汰这些重要数据。对于一般数据可以添加一个缓存时间,当数据失效则请求会从DB中获取并重新存入Redis中。

缓存击穿

讲完了Rediskey的过期淘汰机制,接下我们可以进入正题:为什么会出现缓存击穿、缓存穿透和缓存雪崩现象呢?首先我们来看下请求是如何取到数据的:当接收到用户请求,首先先尝试从Redis缓存中获取到数据,如果缓存中能取到数据则直接返回结果,当缓存中不存在数据时从DB获取数据,如果数据库成功取到数据,则更新Redis,然后返回数据,如果DB无数据,则返回空结果。那什么情况下会出现三大问题现象呢?我们先来看下缓存击穿的情况:

  • 定义:高并发的情况下,某个热门key突然过期,导致大量请求在Redis未找到缓存数据,进而全部去访问DB请求数据,引起DB压力瞬间增大。
  • 解决方案:缓存击穿的情况下一般不容易造成DB的宕机,只是会造成对DB的周期性压力。对缓存击穿的解决方案一般可以这样:Redis中的数据不设置过期时间,然后在缓存的对象上添加一个属性标识过期时间,每次获取到数据时,校验对象中的过期时间属性,如果数据即将过期,则异步发起一个线程主动更新缓存中的数据。但是这种方案可能会导致有些请求会拿到过期的值,就得看业务能否可以接受,如果要求数据必须是新数据,则最好的方案则为热点数据设置为永不过期,然后加一个互斥锁保证缓存的单线程写。

缓存穿透

  • 定义:缓存穿透是指查询缓存和DB中都不存在的数据。比如通过id查询商品信息,id一般大于0,攻击者会故意传id-1去查询,由于缓存是不命中则从DB中获取数据,这将会导致每次缓存都不命中数据导致每个请求都访问DB,造成缓存穿透。
  • 解决方案:缓存穿透的解决方案可以分成两个部分:首先在API层增加基本校验:用户鉴权校验,id校验。比如用户鉴权失败或者id < 0的请求直接进行拦截。其次在缓存和DB都取不到数据的时候将将key-value存储成key-null存储到Redis, 过期时间可以存储的短点比如60S,防止短时间内攻击者不断发起请求导致数据库压力过大出现宕机。

缓存雪崩

  • 定义:缓存中如果大量缓存在一段时间内集中过期了,这时候会发生大量的缓存击穿现象,所有的请求都落在了DB上,由于查询数据量巨大,引起DB压力过大甚至导致DB宕机。
  • 解决方案:缓存雪崩一般没有完美解决的方法,但是我们可以尽量分析用户行为,尽量保证key的失效时间比较平均,防止同一时间出现大量缓存数据同时过期的现象,并且设置热点数据永不过期。同时如果为分布式环境下,使用分布式锁来保证缓存的单线程写,这样可以避免同一时间大量缓存失效导致请求全部落在DB上。而我觉得如果可以接受有些请求拿到过期值,最合理的方案实际上就是使用缓存击穿的方案:Redis中的数据不设置过期时间,然后在缓存的对象上添加一个属性标识过期时间,每次获取到数据时,校验对象中的过期时间属性,如果数据即将过期,则异步发起一个线程主动更新缓存中的数据。

本文分享自微信公众号 - 程序猿周先森(zhanyue_org),作者:逆月翎

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-09-23

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 一篇文章了解Redis数据库

    redis是一个key-value存储系统。它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sor...

    逆月翎
  • Redis与数据库数据一致性

    可能谈到保持Redis与Mysql双库的数据一致性,可能很多人最先想到的方案就是读请求和写请求串行化,串到一个内存队列里去。但是这个方案有着一个致命的缺点:读请...

    逆月翎
  • 单线程Redis性能为何如此之高?

    实际项目开发中现在无法逃避的一个问题就是缓存问题,而缓存问题也是面试必问知识点之一,如果面试官好一点可能会简单的问你二八定律或者热数据和冷数据,但是如果问的深入...

    逆月翎
  • 这几道 Redis 面试题都不懂,怎么拿 Offer?

    随着系统访问量的提高,复杂度的提升,响应性能成为一个重点的关注点。而缓存的使用成为一个重点。redis 作为缓存中间件的一个佼佼者,成为了面试必问项目。

    芋道源码
  • 这么简单的Redis面试题都不懂,怎么拿offer?

    随着系统访问量的提高,复杂度的提升,响应性能成为一个重点的关注点。而缓存的使用成为一个重点。redis 作为缓存中间件的一个佼佼者,成为了面试必问项目。本文分享...

    lyb-geek
  • 这几道Redis面试题都不懂,怎么拿offer?

    随着系统访问量的提高,复杂度的提升,响应性能成为一个重点的关注点。而缓存的使用成为一个重点。redis 作为缓存中间件的一个佼佼者,成为了面试必问项目。本文分享...

    java思维导图
  • 这几道Redis面试题都不懂,怎么拿offer?

    随着系统访问量的提高,复杂度的提升,响应性能成为一个重点的关注点。而缓存的使用成为一个重点。redis 作为缓存中间件的一个佼佼者,成为了面试必问项目。本文分享...

    Spark学习技巧
  • 微服务架构,如何做分布式,通用缓存机制?

    在分布式系统中,特别是最近很火的微服务架构下,有没有或者能不能总结出一个业务静态数据的通用缓存处理机制或方案,这篇文章将结合一些实际的研发经验,尝试理清其中存在...

    搜云库技术团队
  • 一篇文章了解Redis数据库

    redis是一个key-value存储系统。它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sor...

    逆月翎
  • 微服务架构,如何做分布式,通用缓存机制?

    在分布式系统中,特别是最近很火的微服务架构下,有没有或者能不能总结出一个业务静态数据的通用缓存处理机制或方案,这篇文章将结合一些实际的研发经验,尝试理清其中存在...

    用户5224393

扫码关注云+社区

领取腾讯云代金券