numpy.ndarray

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

本文链接:https://blog.csdn.net/weixin_36670529/article/details/101295985

class numpy.ndarray(shape, dtype=float, buffer=None, offset=0, strides=None, order=None)[source]

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory, whether it is an integer, a floating point number, or something else, etc.)

Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The parameters given here refer to a low-level method (ndarray(…)) for instantiating an array.

For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters:

(for the __new__ method; see Notes below) shape : tuple of ints Shape of created array. dtype : data-type, optional Any object that can be interpreted as a numpy data type. buffer : object exposing buffer interface, optional Used to fill the array with data. offset : int, optional Offset of array data in buffer. strides : tuple of ints, optional Strides of data in memory. order : {‘C’, ‘F’}, optional Row-major (C-style) or column-major (Fortran-style) order.

See also

array

Construct an array.

zeros

Create an array, each element of which is zero.

empty

Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype

Create a data-type.

Notes

There are two modes of creating an array using __new__:

  1. If buffer is None, then only shape, dtype, and order are used.
  2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways of constructing an ndarray.

First mode, buffer is None:

>>>

>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random
       [     nan, 2.5e-323]])

Second mode:

>>>

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
...            offset=np.int_().itemsize,
...            dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes:

T : ndarray The transposed array. data : buffer Python buffer object pointing to the start of the array’s data. dtype : dtype object Data-type of the array’s elements. flags : dict Information about the memory layout of the array. flat : numpy.flatiter object A 1-D iterator over the array. imag : ndarray The imaginary part of the array. real : ndarray The real part of the array. size : int Number of elements in the array. itemsize : int Length of one array element in bytes. nbytes : int Total bytes consumed by the elements of the array. ndim : int Number of array dimensions. shape : tuple of ints Tuple of array dimensions. strides : tuple of ints Tuple of bytes to step in each dimension when traversing an array. ctypes : ctypes object An object to simplify the interaction of the array with the ctypes module. base : ndarray Base object if memory is from some other object.

Methods

all([axis, out, keepdims])

Returns True if all elements evaluate to True.

any([axis, out, keepdims])

Returns True if any of the elements of a evaluate to True.

argmax([axis, out])

Return indices of the maximum values along the given axis.

argmin([axis, out])

Return indices of the minimum values along the given axis of a.

argpartition(kth[, axis, kind, order])

Returns the indices that would partition this array.

argsort([axis, kind, order])

Returns the indices that would sort this array.

astype(dtype[, order, casting, subok, copy])

Copy of the array, cast to a specified type.

byteswap([inplace])

Swap the bytes of the array elements

choose(choices[, out, mode])

Use an index array to construct a new array from a set of choices.

clip([min, max, out])

Return an array whose values are limited to [min, max].

compress(condition[, axis, out])

Return selected slices of this array along given axis.

conj()

Complex-conjugate all elements.

conjugate()

Return the complex conjugate, element-wise.

copy([order])

Return a copy of the array.

cumprod([axis, dtype, out])

Return the cumulative product of the elements along the given axis.

cumsum([axis, dtype, out])

Return the cumulative sum of the elements along the given axis.

diagonal([offset, axis1, axis2])

Return specified diagonals.

dot(b[, out])

Dot product of two arrays.

dump(file)

Dump a pickle of the array to the specified file.

dumps()

Returns the pickle of the array as a string.

fill(value)

Fill the array with a scalar value.

flatten([order])

Return a copy of the array collapsed into one dimension.

getfield(dtype[, offset])

Returns a field of the given array as a certain type.

item(*args)

Copy an element of an array to a standard Python scalar and return it.

itemset(*args)

Insert scalar into an array (scalar is cast to array’s dtype, if possible)

max([axis, out, keepdims, initial, where])

Return the maximum along a given axis.

mean([axis, dtype, out, keepdims])

Returns the average of the array elements along given axis.

min([axis, out, keepdims, initial, where])

Return the minimum along a given axis.

newbyteorder([new_order])

Return the array with the same data viewed with a different byte order.

nonzero()

Return the indices of the elements that are non-zero.

partition(kth[, axis, kind, order])

Rearranges the elements in the array in such a way that the value of the element in kth position is in the position it would be in a sorted array.

prod([axis, dtype, out, keepdims, initial, …])

Return the product of the array elements over the given axis

ptp([axis, out, keepdims])

Peak to peak (maximum - minimum) value along a given axis.

put(indices, values[, mode])

Set a.flat[n] = values[n] for all n in indices.

ravel([order])

Return a flattened array.

repeat(repeats[, axis])

Repeat elements of an array.

reshape(shape[, order])

Returns an array containing the same data with a new shape.

resize(new_shape[, refcheck])

Change shape and size of array in-place.

round([decimals, out])

Return a with each element rounded to the given number of decimals.

searchsorted(v[, side, sorter])

Find indices where elements of v should be inserted in a to maintain order.

setfield(val, dtype[, offset])

Put a value into a specified place in a field defined by a data-type.

setflags([write, align, uic])

Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY), respectively.

sort([axis, kind, order])

Sort an array in-place.

squeeze([axis])

Remove single-dimensional entries from the shape of a.

std([axis, dtype, out, ddof, keepdims])

Returns the standard deviation of the array elements along given axis.

sum([axis, dtype, out, keepdims, initial, where])

Return the sum of the array elements over the given axis.

swapaxes(axis1, axis2)

Return a view of the array with axis1 and axis2 interchanged.

take(indices[, axis, out, mode])

Return an array formed from the elements of a at the given indices.

tobytes([order])

Construct Python bytes containing the raw data bytes in the array.

tofile(fid[, sep, format])

Write array to a file as text or binary (default).

tolist()

Return the array as an a.ndim-levels deep nested list of Python scalars.

tostring([order])

Construct Python bytes containing the raw data bytes in the array.

trace([offset, axis1, axis2, dtype, out])

Return the sum along diagonals of the array.

transpose(*axes)

Returns a view of the array with axes transposed.

var([axis, dtype, out, ddof, keepdims])

Returns the variance of the array elements, along given axis.

view([dtype, type])

New view of array with the same data.

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • numpy.empty

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

    于小勇
  • Array Broadcasting in Numpy

    原文链接:https://numpy.org/doc/1.17/user/theory.broadcasting.ht...

    于小勇
  • numpy.argmax

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

    于小勇
  • Array Broadcasting in Numpy

    原文链接:https://numpy.org/doc/1.17/user/theory.broadcasting.ht...

    于小勇
  • numpy.empty

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

    于小勇
  • numpy.zeros_like

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 ...

    于小勇
  • 可调节的硬币(CS DS)

    在本文中,我们考虑一个场景,其中有几种算法可以解决一个给定的问题。每种算法都与成功的概率和成本相关联,且如果未能解决问题,也会受到惩罚。用户可以以指定的成本一次...

    WEIIILII
  • 面子:人脸识别审计的伦理问题研究(CS CY )

    尽管披露有偏见的绩效是必要的,但出于好意的算法审计尝试可能会对这些措施旨在保护的人群造成伤害。在审核面部识别等生物识别系统时,这种担忧甚至更为突出。在这些系统中...

    用户6853689
  • Codefoces 723B Text Document Analysis

    B. Text Document Analysis time limit per test:1 second memory limit per test:256...

    Angel_Kitty
  • 伯克利大学计算机科学的大规模教学观(CS CY)

    在过去的十年中,全国各地的计算机科学(CS)的本科招生人数呈爆炸式增长,因为计算机技能在许多领域中已被证明越来越重要。在这种前所未有的学生需求推动下,加州大学伯...

    奥斯特洛夫斯萌

扫码关注云+社区

领取腾讯云代金券