专栏首页AINLP【Github】nlp-roadmap:自然语言处理路相关路线图(思维导图)和关键词(知识点)

【Github】nlp-roadmap:自然语言处理路相关路线图(思维导图)和关键词(知识点)

看到Reddit和Github上一个有意思的项目:graykode/nlp-roadmap

ROADMAP(Mind Map) and KEYWORD for students those who have interest in learning NLP

Github链接:https://github.com/graykode/nlp-roadmap

graykode/nlp-roadmapgithub.com

主要总结了NLP相关的路线图(思维导图)和关键词(知识点),包括概率和统计、机器学习、文本挖掘、自然语言处理几个部分。以下是作者在Reddit上的介绍文章:

https://www.reddit.com/r/MachineLearning/comments/d8jheo/p_natural_language_processing_roadmap_and_keyword/www.reddit.com

Natural Language Processing Roadmap and Keyword for students who are wondering what to study

I created summarized Natural Language Processing Roadmap in Github Repository with preparing NLP Engineer Interview to not forgetting which i had learned things. :D :D

It's contain in order Probability and Statistics, Machine Learning, Text Mining, Natural Language Processing.

It was very hard to make tree, sub-tree sctucture of mind map with abstract keywords, so Please focus on KEYWORD in square box, as things to study.

Also You can use the material commercially or freely, but please leave the source.

If you like the project, please ask star, fork and Contribution! :D Thanks!!

以下文字图片来自该项目github,感兴趣的同学可以关注:github.com/graykode/nlp

nlp-roadmap

nlp-roadmap is Natural Language Processing ROADMAP(Mind Map) and KEYWORD for students those who have interest in learning Natural Language Processing. The roadmap covers the materials from basic probability/statistics to SOTA NLP models.

Caution!

  • The relationship among keywords could be interpreted in ambiguous ways since they are represented in the format of a semantic mind-map. Please just focus on KEYWORD in square box, and deem them as the essential parts to learn.
  • The work of containing a plethora of keywords and knowledge within just an image has been challenging. Thus, please note that this roadmap is one of the suggestions or ideas.
  • You are eligible for using the material of your own free will including commercial purpose but highly expected to leave a reference.

Curriculum

  1. Probability and Statistics
  2. Machine Learning
  3. Text Mining
  4. Natural Language Processing

Probability & Statistics

Machine Learning

Text Mining

Natural Language Processing

Contribution

Opens for everybody to contribute to the repository, including typo or different perspectives on the materials. I welcome your contribution under the identical contribution guide of kamranahmedse/developer-roadmap.

Reference

[1] ratsgo's blog for textmining, ratsgo/ratsgo.github.io

[2] (한국어) 텍스트 마이닝을 위한 공부거리들, lovit/textmining-tutorial

[3] Christopher Bishop(2006). Pattern Recognition and Machine Learning

[4] Young, T., Hazarika, D., Poria, S., & Cambria, E. (2017). Recent Trends in Deep Learning Based Natural Language Processing. arXiv preprint arXiv:1708.02709.

[5] curated collection of papers for the nlp practitioner, mihail911/nlp-library

Acknowledgement to ratsgo, lovit for creating great posts and lectures.

LICENSE

The class is licensed under the MIT License:

Copyright © 2019 Tae-Hwan Jung.

Author

  • Tae Hwan Jung @graykode, Kyung Hee Univ CE(Undergraduate).
  • Author Email : nlkey2022@gmail.com

点击阅读原文可直达该项目Github链接,推荐Star。

本文分享自微信公众号 - AINLP(nlpjob)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-09-27

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 上百种预训练中文词向量:Chinese-Word-Vectors

    昨天聊到腾讯 AI Lab 的词向量:相似词查询:玩转腾讯 AI Lab 中文词向量 ,今天趁热打铁,推荐Github上的一个中文词向量项目:Chinese-W...

    AINLP
  • pytorch-pretrained-BERT:BERT PyTorch实现,可加载Google BERT预训练模型

    Github上刚刚开源了一个Google BERT的PyTorch实现版本,同时包含可加载Google BERT预训练模型的脚本,感兴趣的同学可以关注:

    AINLP
  • 谷歌发表的史上最强NLP模型BERT的官方代码和预训练模型可以下载了

    TensorFlow code and pre-trained models for BERT https://arxiv.org/abs/1810.04805

    AINLP
  • 将机器学习应用于金融技术领域的15家公司(英)

    用户1737318
  • How to Improve Security in Web Application Development?

    Ways to Improve Security in Web Application Development. Web application securit...

    用户4822892
  • 纳尼?Genbank中超200万条序列受污染!蛋白污染主要来源于一只蜘蛛?

    Metagenomic sequencing allows researchers to investigate organisms sampled from ...

    生信宝典
  • 肾癌单细胞(逆向收费读文献2019-17)

    2018年发表于science杂志,文章是:Single-cell transcriptomes from human kidneys reveal the c...

    生信技能树
  • Yann LeCun:157页PPT揭示深度学习的局限性

    用户1737318
  • 低延迟容量视频边缘流(Multimedia)

    体视是一种新兴的三维空间和物体沉浸式再现的关键技术。容量视频的增强沉浸性带来了新的用例,比如六自由度视频的流媒体,用户可以自由地改变自己的位置和方向。然而,将容...

    用户6869393
  • 深度抽象强化学习-提高抽象学习能力-论文解读

    Deep reinforcement learning (DRL) brings the power of deep neural networks to be...

    用户1908973

扫码关注云+社区

领取腾讯云代金券