前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >分类、检测、分割任务均有SOTA表现,ACNet有多强?

分类、检测、分割任务均有SOTA表现,ACNet有多强?

作者头像
AI科技大本营
发布2019-10-10 16:55:06
6240
发布2019-10-10 16:55:06
举报

作者 | 路一直都在

来源 | 知乎专栏

Abstract

本文提出了一种新的自适应连接神经网络(ACNet),从两个方面对传统的卷积神经网络(CNNs)进行了改进。首先,ACNet通过自适应地确定特征节点之间的连接状态,在处理内部特征表示时可以灵活地切换全局推理和局部推理。从这个角度来说,现有的很多CNN模型,经典的多层感知器MLP以及最近(2017)提出的NLN(Non-local Neural Networks),都是ACNet的特殊形式。其次,ACNet还能够处理非欧几里德数据( non-Euclidean data,关于非欧几里得数据,下文会有解释)。实验证明,ACNet不仅在分类、检测、分割任务上都有SOTA表现,而且还可以克服传统MLP和CNN的一些缺点。

Intorduction

在神经网络的发展过程中,有两大类代表类型:第一种是传统的多层感知器(MLP),由输入层,输出层和隐层构成。通过BP算法,使得网络能有拟合复杂数据的能力。但是MLP有很大的缺陷,在隐层中的每个神经元节点权重不共享,因此MLP的网络参数往往数量庞大,在训练阶段容易过拟合。而且,MLP难以表示二维数据的空间结构。

一个简单的MLP模型

随着深度学习的发展,CNN卷积神经网络出现了,CNN能够实现权重共享,局部特征提取,在MLP的基础上实现了很大的提升,但是卷积仍然有两个固有的缺点,一方面,卷积只能在相邻像素点之间进行特征提取,神经网络各层内部的卷积运算不具备全局推理的能力,因此,如果有两个目标具有相似的外观,对于卷积来说,很难分辨。如下图所示,对于具有相似外观特征的椅子和沙发,只基于局部的特征,很容易得到错误的结论;另一方面,卷积无法处理非欧几里得数据,因为卷积依赖的是有相邻的像素点,这种无序的,散乱的数据形式,对卷积是一个挑战。

为了解决CNNs中的局部性问题,最近提出的非局部网络(Non Local NN)将全局依赖关系强加给所有特征节点,但是作者认为,完全的非局部网络,有时适得其反,会造成退化,如下图所示,如果只基于局部推理,dog很容易被识别,但是加上全局推理后,反而被错分为sheep了,随后作者也在实验部分证明,随着网络非局部性的增加,ImageNet-1k分类任务中的训练和验证精度都会降低。作者认为这种下降是由于过度全局化造成的。

通过以上的实验结果,作者认为,局部信息和全局信息需要共同考虑,即从图像感知和像素感知的角度来共同考虑全局和局部推理。因此,怎样保持一个局部和全局的平衡,既不过度局部化又不过度全局化是最大的挑战。本文提出了ACNet,一个简单通用的自适应连接网络,在MLP,CNNs上取长补短,自适应的捕捉全局和局部的关系依赖。ACNet首先定义了一个基本单元node。如下图所示,node可以是一张图片中的一个像素点;可以是一段音频中的采样;可以是一个图结构中的一个节点等等。

给定输入数据,ACNet自适应地训练搜索每个节点的最优连接,连接关系和连接之间的关系可以用下式表示:

在ACNet中,要有一个这样的意识,不同节点是自适应连接的,因此,有些节点可能是自己推测的,有些节点可能与它的邻域有关,而其他节点则具有全局视野。从这方面讲,如下图所示,ACNet可以看做是MLP,CNNs等的综合。通过学习不同类型连接的重要性程度来搜索最优连接是有差异的,可以通过反向传播来优化。

实验证明,ACNet在ImageNet-1K上top-1error比ResNet更低

ACNet与ResNet在ImageNet-1K实验对比

Background Knowledge

  • non-Euclidean data(非欧几里得数据)

*部分内容参考以下文章,侵删 https://link.zhihu.com/?target=https%3A//blog.csdn.net/imsuhxz/article/details/91361977

数据类型可以分为两大类,分别是:欧几里德结构数据(Euclidean Structure Data) 以及 非欧几里德结构数据(Non-Euclidean Structure Data)

欧几里得数据,最重要的特点就是排列整齐,如下图所示,一个像素看做一个节点的话,每个节点都是排列整齐,有序组合。这种排列方式有利于卷积的操作,能够很好的提取特征,而且不同的数据样本之间,可以根据这种整齐的排列方式,轻松计算距离,最直接的办法就是利用欧式距离。

欧几里得数据结构

n维空间的欧氏距离公式

非欧几里德数据,最大的特点就是排列不整齐,对于数据中的某个节点,很难定义或找到相邻节点,因为相邻节点的位置,数量都是随机的。由于这种随机和不确定性,使得卷积操作变得困难,而且难以定义出欧氏距离。最常见的非欧几里德数据有图(Graph)和流形数据,如下图所示:

图结构

流形数据

ACNet(Adaptive-Connected Neural Networks)

本章节首先介绍一下ACNet的公式表示,然后说明一下ACNet跟MLP,CNNs之间的关系,最后介绍一下ACNet的训练测试和实现细节。

  1. ACNet的公式表示(以图像处理为例)

假定x为输入图片数据,那么最终的输出可以用下式表示:

其中,yi表示第i层的输出节点,j是所有可能与i层节点相关的节点,前文说过,与一个节点有关的节点来自三个方面:来自第i层的节点,i层节点的相邻节点,任意层的节点({the i-th node itself}, {the neighborhood N(i) of the i-th node},{all possible nodes}),这正好对应三种推理模式:自转换,局部推理,全局推理。

在每一种模式前,都对应一个权重,如上式中的α,β,γ,分别对应每一种模式的重要程度。在本文中,作者强制定义α+β+γ=1,自然每个权重的范围就在[0,1],那么以α为例,可以用下式表示:

这里特别说一下第三项,j的节点来自任意层,这就等价于一个全连接了,算力上的消耗肯定比较大,而且参数很多,可能有过拟合的风险。为了解决这个问题,作者在论文中提出,三式中的x在喂入公式进行计算之前,首先通过平均池化进行降采样。最后得到的y通过激活函数进行激活,激活函数的组合形式为BN+ReLU。

2. ACNet与CNNs的关系

假定输入x以tensor表示为(C,H,W),则Xi表示其中的一个像素点,yi表示一个像素点的输出,那么一个3x3的卷积可以表示为:

其中,

  • 省略了非线性激活函数f,它不影响公式的推导过程。
  • i, j ∈ [1, H × W]
  • S表示一个节点的八个相邻节点的集合,S = {i -W -1, i-W, i-W + 1,i, i + 1, i + W-1,i+W , i + W + 1}
  • 这跟ACNet的式二是一样的

3. ACNet与MLP的关系

MLP的公式表示与上文相似,不同的是,节点的集合不是局限在八个,而是不同节点之间的线性组合,S = {1, 2, 3, . . . , H × W}

综上,ACNet可以看作是CNN和MLP的纯数据驱动组合,充分挖掘了这两个模型的优势。让我们再看一下ACNet的公式,如果置α=0,β=1,γ=0,ACNet就是普通卷积的表现形式;同理如果α=0,β=0,γ=1,ACNet就是MLP的表现形式。

更为重要的是,ACNet通过学习α,β,γ的值,实现模型的动态切换,这种模式允许我们构建一个更丰富的层次结构,自适应地组合全局和本地信息。

4. ACNet对非欧几里得数据的处理

在背景知识中提到,所谓的非欧几里德数据主要有两种,Graph图结构和流形结构。非欧几里德数据是没有非结构化的,不是常规意义的排列整齐。比如,在欧几里德数据中,节点i的相邻节点可以表示为N(i) = {i-W-1, . . . , i + W + 1},分别表示{upper left, ..., low right },但是在非欧几里德数据中,没有这种结构化的表示,而且每个节点的相邻节点数量是不固定的,因此,这样的结构就无法很好的直接利用上述公式。对于Vij来说,在欧几里德数据中,每个值是不同的,而在非欧几里德数据中,数据是共享的,因此会削弱数据的表达能力。为了解决这些问题,对于非结构化的数据,提出了下列公式:

其中,U,V,W是在j中所有的节点间共享的,这与1x1卷积思想有些类似。

5. Training & Inference

设Θ为网络参数集合(如卷积和全连接权重),Φ是一组控制参数,控制网络体系结构。

在ACNet中,参数可以表示为:

Φ = {λα, λβ, λγ}

损失函数可以表示为:L(Θ, Φ),Θ 和Φ可以通过BP联合训练优化

Experiments

  • 在ImageNet-1K上的表现
  • 可视化

ACNet在ImageNet上训练生成具有不同类型推理的节点的可视化。用黄色绘制的一个节点表示它是来自前一层的全局推理的输出(即,它连接到前一层的所有节点),而相对的黑色节点表示来自前一层的局部推理的输出。

Conclusion

本文提出了一个概念上通用且功能强大的网络-ACNet,它可以通过学习不同模型的参数,动态切换通用数据(即欧几里德数据和非欧几里德数据)的全局和局部推理。其次,ACNet是第一个既能继承MLP和CNN的优点,又能克服它们在各种计算机视觉和机器学习任务上的缺点的网络。

原文链接:

https://zhuanlan.zhihu.com/p/84205427

(*本文为 AI科技大本营转载文章,转载请联系原作者)

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-10-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI科技大本营 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Intorduction
  • Experiments
  • Conclusion
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档