前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >简单的 C++ 结构体字段反射

简单的 C++ 结构体字段反射

作者头像
腾讯技术工程官方号
发布2019-10-17 11:40:05
6K0
发布2019-10-17 11:40:05
举报

本文不讨论完整的 C++ 反射技术,只讨论 结构体 (struct) 的 字段 (field) 反射,及其在序列化/反序列化代码生成上的应用。

正文开始于 § 静态反射 部分,其他部分都是铺垫,可以略读。

打包后的代码可以通过 archived.zip下载,每个 .cc 文件上都有对应的编译、运行脚本,或者可以通过 run_all.sh 脚本运行所有代码。

1. 背景

很多人喜欢把程序员称为 码农,程序员也经常嘲讽自己每天都在 搬砖。这时候,大家会想:能否构造出一些 更好的工具,代替我们做那些无意义的 体力劳动 呢?

在实际 C++ 项目中,我们经常需要实现一些与外部系统交互的 接口 —— 外部系统传入 JSON 参数,我们的程序处理后,再以 JSON 的格式传回外部系统。这个过程就涉及到了两次数据结构的转换:

  • 输入的 JSON 转换为 C++ 数据结构(反序列化 deserialization
  • C++ 数据结构 转换为 输出的 JSON(序列化 serialization

如果传输的 JSON 数据 格式 (schema) 非常繁多、比较复杂,那么序列化/反序列化的代码也会变得非常复杂 —— 需要处理 结构嵌套可选字段输入合法性检查 等问题。如果为每个 JSON 数据结构都 人工手写 一套序列化/反序列化代码,那么 工作量 会特别大。

例如,chromium/headless 的 devtools 相关接口里就定义了 33 个 领域模型 (domain model),每个模型有自己的格式,其中又包含了许多字段。

懒惰是程序员的天性:

代码生成器虽然功能强大,但依赖复杂,不易于和已有系统集成。所以本文主要讨论如何用 C++ 14 提供的 元编程 (metaprogramming) 技巧(C++ 11 也支持),让编译器帮你写代码。

2. 目标

  • 基于 C++ 原生语法,不需要引入第三方库
  • 支持 非侵入式 (nonintrusive) 接口,能直接应用到已有代码上
  • 提供 声明式 (declarative) 的方法,只需要声明格式,不需要写逻辑语句
  • 不会带来 额外的运行时开销,能达到和手写代码一样的运行时效率

基于 nlohmann 的 C++ JSON 库,给定两个 C++ 结构体 SimpleStruct 和 NestedStruct

struct SimpleStruct {
  bool bool_;
  int int_;
  double double_;
  std::string string_;
  std::unique_ptr<bool> optional_;
};

struct NestedStruct {
  SimpleStruct nested_;
  std::vector<SimpleStruct> vector_;
};

一般接口的业务处理,往往包括三部分:

  • 解析输入(字符串到 JSON 对象的转换 + JSON 对象到领域模型的 反序列化
  • 处理业务逻辑(实际需要我们写的代码)
  • 转储输出(领域模型到 JSON 对象的 序列化 + JSON 对象到字符串的转换)
// input
json json_input = json::parse(
    "{"
    "  \"_nested\": {"
    "    \"_bool\": false,"
    "    \"_int\": 0,"
    "    \"_double\": 0,"
    "    \"_string\": \"foo\""
    "  },"
    "  \"_vector\": [{"
    "    \"_bool\": true,"
    "    \"_int\": 1,"
    "    \"_double\": 1,"
    "    \"_string\": \"bar\","
    "    \"_optional\": true"
    "  },{"
    "    \"_bool\": true,"
    "    \"_int\": 2,"
    "    \"_double\": 2.0,"
    "    \"_string\": \"baz\","
    "    \"_optional\": false"
    "  }]"
    "}");
NestedStruct nested = json_input.get<NestedStruct>();

// use
nested.nested_.string_ += " in nested struct";

// output
json json_output = json(nested);
std::string string_output = json_output.dump(2);
  • 对于 JSON 对象和字符串之间的转换,主流的JSON 库都实现了:
    • 调用 json::parse 从字符串得到输入 JSON 对象
    • 调用 json::dump 将 JSON 对象转为用于输出的字符串
  • 而 JSON 对象和 C++ 结构体之间的转换,需要我们实现:
    • 通过反序列化,调用 json::get() 得到 NestedStruct nested
    • 通过序列化,使用 nested 构造输出 JSON 对象

3. 实现

实现从 C++ 结构体到 JSON 的序列化/反序列化操作,需要用到以下信息:

  • 结构体有哪些字段
    • bool_/int_/double_/string_/optional_
    • nested_/vector_
  • 每个字段在结构体中的什么位置
    • &SimpleStruct::bool_/&SimpleStruct::int_/&SimpleStruct::double_/&SimpleStruct::string_/&SimpleStruct::optional_
    • &NestedStruct::nested_/&NestedStruct::vector_
  • 每个字段在JSON 中对应的名称是什么
    • "_bool"/"_int"/"_double"/"_string"/"_optional"
    • "_nested"/"_vector"
  • 每个字段如何从 C++ 到 JSON 进行类型映射
    • bool 对应 Boolean
    • int 对应 Number(Integer)
    • double 对应 Number
    • string 对应 String
    • vector 对应 Array
    • SimpleStruct/NestedStruct 对应 Object
    • 必选字段缺失 或 字段类型与 JSON 数据 类型不匹配,则抛出异常
    • 可选字段(例如 optional_)缺失,则跳过检查

对于很多支持 反射 (reflection) 的语言,JSON 的解析者 可以通过反射接口,查询到 SimpleStruct/NestedStruct 所有的 字段信息

尽管 C++ 支持 运行时类型信息 (RTTI, run-time type information),但无法得到所有上述信息,所以需要 SimpleStruct 的定义者 把这些信息告诉 JSON 的解析者

于是,我们用以下几种方法实现:

4. 人工手写 序列化/反序列化 代码

代码链接

实现序列化/反序列化最简单的方法,就是通过 人工编写 代码:

void to_json(nlohmann::json& j, const SimpleStruct& value) {
  j["_bool"] = value.bool_;
  j["_int"] = value.int_;
  j["_double"] = value.double_;
  j["_string"] = value.string_;
  j["_optional"] = value.optional_;
}

void from_json(const nlohmann::json& j, SimpleStruct& value) {
  j.at("_bool").get_to(value.bool_);
  j.at("_int").get_to(value.int_);
  j.at("_double").get_to(value.double_);
  j.at("_string").get_to(value.string_);
  if (j.find("_optional") != j.cend()) {
    j.at("_optional").get_to(value.optional_);
  }
}

void to_json(nlohmann::json& j, const NestedStruct& value) {
  j["_nested"] = value.nested_;
  j["_vector"] = value.vector_;
}

void from_json(const nlohmann::json& j, NestedStruct& value) {
  j.at("_nested").get_to(value.nested_);
  j.at("_vector").get_to(value.vector_);
}
  • 在 to_json/from_json 中包含了 所有字段 的 位置、名称、映射方法
    • 使用 j[name] = field 序列化
    • 使用 j.at(name).get_to(field) 反序列化
    • 针对可选字段检查字段是否存在,不存在则跳过
  • nlohmann 的 C++ JSON 库能处理 结构嵌套
    • j = value.nested_ 会调用 void to_json(json& j, const SimpleStruct& value) 序列化 SimpleStruct
    • j.get_to(value.nested_) 会调用 void from_json(const json& j, SimpleStruct& value) 反序列化 SimpleStruct
  • nlohmann 的 C++ JSON 库基于 C++ 原生的 异常处理throw-try-catch):
    • 如果字段不存在,函数 json::at 抛出异常
    • 如果字段实际类型和 JSON 输入类型不匹配,函数 json::get_to 抛出异常

手写 to_json/from_json 需要写 2 份类似的代码:

  • 一方面,需要复制粘贴,导致 代码冗余
  • 另一方面,两份代码逻辑不是对称的(需要特殊处理 可选字段),不易于统一编写

5. 动态反射

“崇尚偷懒”的 Google 的工程师,为 chromium/base::Value 构建了一套基于 动态反射 (dynamic reflection) 的反序列化机制,实现统一的 JSON 数据和 C++ 结构体转换。(参考:chromium/base::JSONValueConverter

核心原理 是:利用 适配器模式 (adapter pattern) 和 策略模式 (strategy pattern),定义 接口 (interface) 抹除具体字段转换操作的类型,通过 运行时多态 (runtime polymorphism) 调用接口进行实际的转换操作。

Talk is cheap, show me the code —— 代码链接

首先,为不同 字段类型 定义一个通用的转换接口 ValueConverter<FieldType>,用于存储实际的 C++ 类型与 JSON 类型的转换操作(仅关联操作的字段类型,抹除具体转换操作的类型):

template <typename FieldType>
using ValueConverter =
    std::function<void(FieldType* field, const std::string& name)>;
  • 参数 field 表示字段的值,name 是字段的名称
  • 原始代码将 ValueConverter 定义为接口;本文为了化简,直接使用 std::function(关于使用接口的讨论,参考:回调 vs 接口

然后,为不同类型的 结构体 定义一个通用的转换接口 FieldConverterBase<StructType>,用于存储结构体内所有字段的转换操作(仅关联结构体的类型,抹除操作的字段类型):

template <typename StructType>
class FieldConverterBase {
 public:
  virtual ~FieldConverterBase() = default;
  virtual void operator()(StructType* obj) const = 0;
};

接着,通过 FieldConverter <StructType, FieldType> 将上边两个接口 承接 起来,用于存储 结构体 的 字段类型 的实际转换操作(类似于 double dispatch),同时关联上具体某个字段的位置和名称(实现 FieldConverterBase 接口,调用 ValueConverter 接口):

template <typename StructType, typename FieldType>
class FieldConverter : public FieldConverterBase<StructType> {
 public:
  FieldConverter(const std::string& name,
                 FieldType StructType::*pointer,
                 ValueConverter<FieldType> converter)
      : field_name_(name),
        field_pointer_(pointer),
        value_converter_(converter) {}

  void operator()(StructType* obj) const override {
    return value_converter_(&(obj->*field_pointer_), field_name_);
  }

 private:
  std::string field_name_;
  FieldType StructType::*field_pointer_;
  ValueConverter<FieldType> value_converter_;
};
  • 构造时传递 字段名称 field_name_
  • 字段的 成员指针 (member pointer)(即字段位置)field_pointer_
  • 字段的映射方法 value_converter_
  • 在 operator() 转换时调用 : value_converter_.operator(),传入当前结构体中字段的值和字段的名称;其中结构体 obj 字段的值通过 obj-&gt;*field_pointer_ 得到

最后,针对 结构体 定义一个存储 所有字段 信息(名称、位置、映射方法)的容器 StructValueConverter<StructType>,并提供 注册 字段信息的接口(有哪些字段)RegisterField 和执行所有转换操作的接口 operator()仅关联结构体的类型,利用 FieldConverterBase 抹除操作的字段信息):

template <class StructType>
class StructValueConverter {
 public:
  template <typename FieldType>
  void RegisterField(FieldType StructType::*field_pointer,
                     const std::string& field_name,
                     ValueConverter<FieldType> value_converter) {
    fields_.push_back(std::make_unique<FieldConverter<StructType, FieldType>>(
        field_name, field_pointer, std::move(value_converter)));
  }

  void operator()(StructType* obj) const {
    for (const auto& field_converter : fields_) {
      (*field_converter)(obj);
    }
  }

 private:
  std::vector<std::unique_ptr<FieldConverterBase<StructType>>> fields_;
};

使用样例代码链接

具体使用时,只需要两步:

  1. 构造 converter 对象,调用 RegisterField 动态绑定字段信息(名称、位置、映射方法)
  2. 调用 converter(&simple) 对所有注册了的字段 进行转换
// setup converter (partial)
auto int_converter = [](int* field, const std::string& name) {
  std::cout << name << ": " << *field << std::endl;
};
auto string_converter = [](std::string* field, const std::string& name) {
  std::cout << name << ": " << *field << std::endl;
};

StructValueConverter<SimpleStruct> converter;
converter.RegisterField(&SimpleStruct::int_, "int",
                        ValueConverter<int>(int_converter));
converter.RegisterField(&SimpleStruct::string_, "string",
                        ValueConverter<std::string>(string_converter));

// use converter
SimpleStruct simple{2, "hello dynamic reflection"};
converter(&simple);

// output:
//   int: 2
//   string: hello dynamic reflection

基于动态反射的开源库:

  • https://github.com/fnc12/sqlite_orm
  • https://github.com/billyquith/ponder
  • https://github.com/rttrorg/rttr

6. 静态反射

实际上,实现序列化/反序列化所需要的信息(有哪些字段,每个字段的位置、名称、映射方法),在 编译时 (compile-time) 就已经确定了 —— 没必要在 运行时 (runtime) 动态构建 converter 对象。所以,我们可以利用 静态反射 (static reflection) 的方法,把这些信息告诉 编译器,让它帮我们 生成代码

核心原理 是:利用 访问者模式 (visitor pattern),使用 元组 std::tuple 记录结构体所有的字段信息,通过 编译时多态 (compile-time polymorphism) 针对具体的 字段类型 进行转换操作。

Talk is cheap, show me the code —— 代码链接

首先,定义一个 StructSchema<StructType> 函数模板 (function template),返回所有字段信息(默认返回空元组):

template <typename T>
inline constexpr auto StructSchema() {
  return std::make_tuple();
}

然后,提供以下两个宏:

DEFINE_STRUCT_SCHEMA 和 DEFINE_STRUCT_FIELD

定义结构体字段信息(有哪些、位置、名称),隐藏 StructSchema 和 std::tuple 的实现细节:

#define DEFINE_STRUCT_SCHEMA(Struct, ...)        \
  template <>                                    \
  inline constexpr auto StructSchema<Struct>() { \
    using _Struct = Struct;                      \
    return std::make_tuple(__VA_ARGS__);         \
  }

#define DEFINE_STRUCT_FIELD(StructField, FieldName) \
  std::make_tuple(&_Struct::StructField, FieldName)
  • StructSchema 返回元组的结构是: ((& field1, name1), (& field2, name2), …)
  • DEFINE_STRUCT_SCHEMA 定义了 结构体 Struct 有哪些字段
  • DEFINE_STRUCT_FIELD 定义了每个 字段 的 位置、名称
  • using _Struct = Struct 提供了一种宏内数据接力的方法,让下一个宏能获取上一个宏的数据

最后,提供 ForEachField<StructType> 函数,从对应的 StructSchema<StructType> 取出记录结构体 StructType 所有字段信息 的元组,然后遍历这个元组,从中取出 每个字段的位置、名称,作为参数调用转换函数 fn

template <typename T, typename Fn>
inline constexpr void ForEachField(T&& value, Fn&& fn) {
  constexpr auto struct_schema = StructSchema<std::decay_t<T>>();
  detail::ForEachTuple(struct_schema, [&value, &fn](auto&& field_schema) {
    fn(value.*(std::get<0>(std::forward<decltype(field_schema)>(field_schema))),
       std::get<1>(std::forward<decltype(field_schema)>(field_schema)));
  });
}
  • fn 接受的参数分别为:字段的值和名称 (field_value, field_name)
    • 字段的值通过 value.*field_pointer 得到,其中 field_pointer 是成员指针
  • ForEachTuple 的实现中还用到了 静态断言 (static assert) 检查,具体见 代码
    • 检查 StructSchema 是否定义了字段信息
    • 检查每个字段的信息 是否都包含了位置和名称

使用样例代码链接

具体使用时,也是需要两步:

  • 使用下面两个参数静态定义字段信息(名称、位置) DEFINE_STRUCT_SCHEMA 和 DEFINE_STRUCT_FIELD
  • 调用 ForEachField 并传入 映射方法(泛型 functor 或泛型 lambda 表达式),对所有字段调用这个函数
// define schema (partial)
DEFINE_STRUCT_SCHEMA(
    SimpleStruct,
    DEFINE_STRUCT_FIELD(int_, "int"),
    DEFINE_STRUCT_FIELD(string_, "string"));

// use ForEachTuple
ForEachField(SimpleStruct{1, "hello static reflection"},
             [](auto&& field, auto&& name) {
               std::cout << name << ": "
                         << field << std::endl;
             });

// output:
//   int: 1
//   string: hello static reflection

静态反射过程中,最核心 的地方:传入 ForEachField 的可调用对象 fn,通过 编译时多态 针对不同 字段类型 选择不同的转换操作:

  • 针对 int 类型字段,ForEachField 调用 fn(simple.int_, "int")
  • 针对 std::string 类型字段,ForEachField 调用 fn(simple.string_, "string")

2019/2/19 补充 如果需要针对不同类型使用不同的操作,可以考虑 重载 lambda 表达式提案 p0051r3): ForEachField(SimpleStruct{1, "hello static reflection"},              overload(                  [](int field, const char* name) {                    std::cout << "i " << name << ": "                              << field << std::endl;                  },                  [](const std::string& field, const char* name) {                    std::cout << "s " << name << ": "                              << field.c_str() << std::endl;                  })); 2019/1/11 补充(by fredwyan) C++ 11 不支持 泛型 lambda 表达式,可以使用 泛型 functor 代替传入 ForEachField 的可调用对象,从而实现 编译时多态: struct GenericFunctor {   // ... data members   template <typename Field, typename Name>   void operator()(Field&& field, Name&& name) {     std::cout << name << ": " << field << std::endl;   } }; // use ForEachTuple ForEachField(SimpleStruct{1, "hello static reflection"},              GenericFunctor{/* ... context data */});

最后 ForEachField(SimpleStruct{...}, [](...) { ... }); 经过 内联 (inline) 后,生成的代码非常简单:

{
  SimpleStruct simple{1, "hello static reflection"};
  std::cout << "int" << ": " << simple.int_ << std::endl;
  std::cout << "string" << ": " << simple.string_ << std::endl;
}

基于静态反射的开源库:

  • https://github.com/qicosmos/iguana

使用编译时静态反射,相对于运行时动态反射,有许多优点:

7. 编译器生成 序列化/反序列化 代码

代码链接

基于 ForEachField,我们可以实现 通用 的结构体序列化/反序列化函数:

template <typename T>
struct adl_serializer<T, std::enable_if_t<::has_schema<T>>> {
  template <typename BasicJsonType>
  static void to_json(BasicJsonType& j, const T& value) {
    ForEachField(value, [&j](auto&& field, auto&& name) {
      j[name] = field;
    });
  }

  template <typename BasicJsonType>
  static void from_json(const BasicJsonType& j, T& value) {
    ForEachField(value, [&j](auto&& field, auto&& name) {
      // ignore missing field of optional
      if (::is_optional_v<decltype(field)> &&
          j.find(name) == j.end())
        return;

      j.at(name).get_to(field);
    });
  }
};
  • 和§ 人工手写 序列化/反序列化 代码的代码类似:
    • 使用 j[name] = field 序列化
    • 使用 j.at(name).get_to(field) 反序列化
    • 针对可选字段检查字段是否存在,不存在则跳过(C++ 17 还可以使用 if constexpr 实现选择性编译)
  • 关于如何使用 nlohmann::adl_serializer 扩展自定义类型的序列化/反序列化操作,参考 How do I convert third-party types? | nlohmann/json
  • 使用的两个简单的变量模板(variable template),具体见代码
    • has_schema 检查是否定义了: StructSchema
    • is_optional_v 检查字段类型是不是可选参数

对于需要进行序列化/反序列化的自定义结构体,我们只需要使用下面这两个参数声明 其字段信息即可 —— 不需要为每个结构体写一遍 to_json/from_json 逻辑了:

DEFINE_STRUCT_SCHEMA 和 DEFINE_STRUCT_FIELD

DEFINE_STRUCT_SCHEMA(
    SimpleStruct,
    DEFINE_STRUCT_FIELD(bool_, "_bool"),
    DEFINE_STRUCT_FIELD(int_, "_int"),
    DEFINE_STRUCT_FIELD(double_, "_double"),
    DEFINE_STRUCT_FIELD(string_, "_string"),
    DEFINE_STRUCT_FIELD(optional_, "_optional"));

DEFINE_STRUCT_SCHEMA(
    NestedStruct,
    DEFINE_STRUCT_FIELD(nested_, "_nested"),
    DEFINE_STRUCT_FIELD(vector_, "_vector"));

于是,编译器就可以生成和 § 人工手写 序列化/反序列化 代码 一致的代码了。

图片来源:Declarative Programming And The Web

8. 写在最后

不依赖于第三方库,只需要简单的声明,没有额外的运行时开销 —— 这就是 现代 C++ 元编程

掌握 C++ 元编程,自己打造工具,解放生产力,告别搬砖的生活!

原文可以点击 阅读原文 获得。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-10-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 腾讯技术工程 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 背景
  • 2. 目标
  • 3. 实现
  • 4. 人工手写 序列化/反序列化 代码
  • 5. 动态反射
  • 6. 静态反射
  • 7. 编译器生成 序列化/反序列化 代码
  • 8. 写在最后
相关产品与服务
文件存储
文件存储(Cloud File Storage,CFS)为您提供安全可靠、可扩展的共享文件存储服务。文件存储可与腾讯云服务器、容器服务、批量计算等服务搭配使用,为多个计算节点提供容量和性能可弹性扩展的高性能共享存储。腾讯云文件存储的管理界面简单、易使用,可实现对现有应用的无缝集成;按实际用量付费,为您节约成本,简化 IT 运维工作。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档