一次生产的JVM优化

生产环境有二台阿里云服务器,均为同一时期购买的,CPU、内存、硬盘等配置相同。具体配置如下:

由于这二服务器硬件和软件配置相同,并且运行相同的程序,所以在Nginx轮询策略均weight=1,即平台的某个流量由这二台机器平分。

有一次对系统进行例行检查,使用PinPoint查看下服务器”Heap Usage”的使用情况时,发现,在有一个系统Full GC非常频繁,大约五分钟一次Full GC(如果不明白Full GC的什么意思的,请自行百度),吓我一跳。这么频繁的Full GC,导致系统暂停处理业务,对系统的实时可用性大打折扣。我检查了一下Tomcat(Tomcat8.5.28)配置,发现在tomcat没有作任何关于JVM内存的设置,全部使用默认模式。由于这二服务器硬件和软件配置相同,并且运行相同的程序,所以在Nginx轮询策略均weight=1,即平台的某个流量由这二台机器平分。

GC数据:

在业务峰期间,通过PinPoint观察的A、B节点的”Heap Usage”使用情况,分别进行以下几个时间段数据。

3小时图:

上图B系统在三个小时内,一共发生了22次Full GC,大约每8分钟进行一次Full GC。每次Full GC的时间大概有150ms左右,即B系统在三个小时内,大约有3300ms暂停系统运行。从上图来看,堆的空间最大值在890M左右,但在堆空间的大小大约200M就发生Full GC了,从系统资源的利用角度来考虑,这个使用率太低了。

上图A系统在3个小时内,一共发生了0次Full GC,嗯,就是没有任何停顿。 在这3小时,系统一直在处理业务,没有停顿。堆的总空间大约1536m,目前堆的空间大于500M。

6小时图:

上图B系统在6个小时的数据统计和3个小时很像,6个小时内一共发生了N次Full GC,均是堆的空间小于200M就发生Full GC了。

上图A系统在6个小时内,一共发生了0次Full GC,表现优秀。

12小时图:

上图B系统在12个小时内,一共发生了N次Full GC,左边Full GC比较少,是因为我们的业务主要集中白天,虽然晚上属于非业务高峰期间,还是有Full GC。

上图A系统在12个小时内,一共发生了0次Full GC,表现优秀。

GC日志:

看下gc.log文件,因为我们两台服务器都输出了gc的详细日志,先看下B系统的Full GC日志。

上图全部是”

[Full GC (Ergonomics)”日志,是因为已经去掉” GC (Allocation Failure”日志,这样更方便观察和分析日志,选取GC日志文件最后一条Full GC日志。
    2018-12-24T15:52:11.402+0800: 447817.937: [Full GC (Ergonomics) [PSYoungGen: 480K->0K(20992K)] [ParOldGen: 89513K->69918K(89600K)] 
    89993K->69918K(110592K), [Metaspace: 50147K->50147K(1095680K)], 0.1519366 secs] [Times: user=0.21 sys=0.00, real=0.15 secs]

可以计算得到以下信息: 堆的大小:110592K=108M 老生代大小:89600K=87.5M 新生代大小:20992K=20.5M

分析:这次Full GC是因为老年代对象占用的空间的大小已经超过老年代容量 ([ParOldGen: 89513K->69918K(89600K)])引发的Full GC。是因为分配给老年代的空间太小,远远不能满足系统对业务的需要,导致老年代的空间常常被占满,老年代的空间满了,导致的Full GC。由于老年代的空间比较小,所以每次Full GC的时间也比较短。 A系统日志,只有2次Full GC,这2次GC均发生在系统启动时:

7.765: [Full GC (Metadata GC Threshold) [PSYoungGen: 18010K->0K(458752K)] [ParOldGen: 15142K->25311K(1048576K)] 33153K->25311K(1507328K), [Metaspace: 34084K->34084K(1081344K)], 0.0843090 secs] [Times: user=0.14 sys=0.00, real=0.08 secs]

可以得到以下信息:

堆的大小:1507328K=1472M 老生代大小:89600K=1024M 新生代大小:20992K=448M

分析:A系统只有系统启动才出现二次Full GC现象,而且是” Metadata GC Threshold”引起的,而不是堆空间引起的Full GC。虽然经过一个星期的观察,A系统没有Full GC,但一旦发生Full GC时间则会比较长。其它系统增加发现过,1024M的老年代,Full GC持续的时间大约是90ms秒。所以看得出来推也不是越大越好,或者说在UseParallelOldGC收集器中,堆的空间不是越大越好。 分析与优化

总体分析:

B系统的Full GC过于频繁,是因为老生代只有约108M空间,根本无法满足系统在高峰时期的内存空间需求。由于ParOldGen(老年代)常常被耗尽,所以就发生Full GC事件了。 A系统的堆初始空间(Xms)和堆的最大值(Xmx)均为1536m,完全可以满足业务高峰期的内存需求。

优化策略:

B系统先增加堆空间大小,即通过设置Xms、 Xmx值增加堆空间。直接把Xms和Xmx均设置为1024M。直接堆的启动空间(Xms)直接设置为堆的最大值的原因是:因为直接把Xms设置为最大值(Xmx)可以避免JVM运行时不停的进行申请内存,而是直接在系统启动时就分配好了,从而提高系统的效率。把Xms(堆大小)设置为1024M,是因为采用JDK的建议,该建议通过命令得到”

java -XX:+PrintCommandLineFlags -version” 。![](index_files/0.8277313893055347.png)其中,“-XX:MaxHeapSize=1004719104”,.

即Xmx为1024M,其它建议暂时不采纳。所以综合下来的B系统的JVM参数设置如下:

export JAVA_OPTS="-server –Xms1024m -Xmx1024m -XX:+UseParallelOldGC  -verbose:gc -Xloggc:../logs/gc.log  -XX:+PrintGCDetails -XX:+PrintGCTimeStamps"

A系统JVM参数设置保持不变,以便观察系统运行情况,即:

export JAVA_OPTS="-server -Xms1536m -Xmx1536m -XX:+UseParallelOldGC  -verbose:gc -Xloggc:../logs/gc.log  -XX:+PrintGCDetails -XX:+PrintGCTimeStamps"

将A、B节点系统的JVM参数采用2套参数,是为了验证A或B的参数更适合实际情况。

来源:

https://my.oschina.net/u/3627055/blog/2995973

更多技术干货

近期100多篇技术干货,升职加薪必看

数据库分库分表,何时分?怎样分?

浅谈Java中15种锁的分析比较

通过10张图介绍,分布式架构如何演进!

Java并发编程75道面试题及答案

MQ消息队列应用场景比较介绍

动图+源码+总结:数据结构执行过程及原理

我们来谈下高并发和分布式中的幂等处理

大型分布式系统中的缓存架构

美团面试经历,贡献出来一起学习

干货:MySQL索引与优化实践

分布式事务不理解?一次给你讲清楚

动画+原理+代码+优化,解读十大经典排序算法

本文分享自微信公众号 - 搜云库技术团队(souyunku)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-01-09

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

扫码关注云+社区

领取腾讯云代金券