GBDT 的全称是 Gradient Boosting Decision Tree,梯度提升树,在传统机器学习算法中,GBDT算的上TOP3的算法。想要理解GBDT的真正意义,那就必须理解GBDT中的Gradient Boosting 和Decision Tree分别是什么?
1. Decision Tree:CART回归树 首先,GBDT使用的决策树是CART回归树,无论是处理回归问题还是二分类以及多分类,GBDT使用的决策树通通都是都是CART回归树。为什么不用CART分类树呢?因为GBDT每次迭代要拟合的是梯度值,是连续值所以要用回归树。 对于回归树算法来说最重要的是寻找最佳的划分点,那么回归树中的可划分点包含了所有特征的所有可取的值。在分类树中最佳划分点的判别标准是熵或者基尼系数,都是用纯度来衡量的,但是在回归树中的样本标签是连续数值,所以再使用熵之类的指标不再合适,取而代之的是平方误差,它能很好的评判拟合程度。
2. Gradient Boosting: 拟合负梯度 梯度提升树(Grandient Boosting)是提升树(Boosting Tree)的一种改进算法,所以在讲梯度提升树之前先来说一下提升树。 先来个通俗理解:假如有个人30岁,我们首先用20岁去拟合,发现损失有10岁,这时我们用6岁去拟合剩下的损失,发现差距还有4岁,第三轮我们用3岁拟合剩下的差距,差距就只有一岁了。如果我们的迭代轮数还没有完,可以继续迭代下面,每一轮迭代,拟合的岁数误差都会减小。最后将每次拟合的岁数加起来便是模型输出的结果。
上面两节分别将Decision Tree和Gradient Boosting介绍完了,下面将这两部分组合在一起就是我们的GBDT了。
本人用python以及pandas库实现GBDT的简易版本,在下面的例子中用到的数据都在github可以找到,大家可以结合代码和下面的例子进行理解,欢迎star~
获取方式
关注微信公众号 datayx 然后回复 GBDT 即可获取。
重复此步骤,直到m>5 结束,最后生成5棵树。
本文章从GBDT算法的原理到实例详解进行了详细描述,但是目前只写了回归问题,GitHub上的代码也是实现了回归、二分类、多分类以及树的可视化。
原文 https://blog.csdn.net/zpalyq110/article/details/79527653