MySQL中IS NULL、IS NOT NULL、!=不能用索引?胡扯!

来源:我们都是小青蛙

作者:小孩子4919

不知道从什么时候开始,网上流传着这么一个说法:

MySQL的WHERE子句中包含 IS NULL、IS NOT NULL、!= 这些条件时便不能使用索引查询,只能使用全表扫描。

这种说法愈演愈烈,甚至被很多同学奉为真理。咱啥话也不说,举个例子。假如我们有个表s1,结构如下:

CREATE TABLE s1 (
    id INT NOT NULL AUTO_INCREMENT,
    key1 VARCHAR(100),
    key2 VARCHAR(100),
    key3 VARCHAR(100),
    key_part1 VARCHAR(100),
    key_part2 VARCHAR(100),
    key_part3 VARCHAR(100),
    common_field VARCHAR(100),
    PRIMARY KEY (id),
    KEY idx_key1 (key1),
    KEY idx_key2 (key2),
    KEY idx_key3 (key3),
    KEY idx_key_part(key_part1, key_part2, key_part3)
) Engine=InnoDB CHARSET=utf8;

这个表里有10000条记录:

mysql> SELECT COUNT(*) FROM s1;
+----------+
| COUNT(*) |
+----------+
|    10000 |
+----------+
1 row in set (0.00 sec)

下边我们直接贴几个图:

上边几个查询语句的WHERE子句中用了IS NULLIS NOT NULL!=这些条件,但是从它们的执行计划中可以看出来,这些语句都采用了相应的二级索引执行查询,而不是使用所谓的全表扫描,谣言不攻自破。当然,戳破这些谣言并不是本文的目的,本文来更细致的分析一下这些查询到底是怎么执行的。

NULL值是怎么在记录中存储的

在MySQL中,每一条记录都有它固定的格式,我们以InnoDB存储引擎的Compact行格式为例,来看一下NULL值是怎样存储的。在Compact行格式下,一条记录是由下边这几个部分构成的:

为了故事的顺利发展,我们新建一个称之为record_format_demo的表:

CREATE TABLE record_format_demo (
     c1 VARCHAR(10),
     c2 VARCHAR(10) NOT NULL,
     c3 CHAR(10),
     c4 VARCHAR(10)
 ) CHARSET=ascii ROW_FORMAT=COMPACT;

因为我们的重点是NULL值是如何存储在记录中的,所以重点唠叨一下行格式的NULL值列表部分,其他的部分可以到小册中查看。存储NULL值的过程如下:

  1. 首先统计表中允许存储NULL的列有哪些。 我们前边说过,主键列、被NOT NULL修饰的列都是不可以存储NULL值的,所以在统计的时候不会把这些列算进去。比方说表record_format_demo的3个列c1c3c4都是允许存储NULL值的,而c2列是被NOT NULL修饰,不允许存储NULL值。
  2. 如果表中没有允许存储NULL的列,则NULL值列表也不存在了,否则将每个允许存储NULL的列对应一个二进制位,二进制位按照列的顺序逆序排列,二进制位表示的意义如下: 因为表record_format_demo有3个值允许为NULL的列,所以这3个列和二进制位的对应关系就是这样:

再一次强调,二进制位按照列的顺序逆序排列,所以第一个列c1和最后一个二进制位对应。

  • 二进制位的值为1时,代表该列的值为NULL
  • 二进制位的值为0时,代表该列的值不为NULL

  1. 设计InnoDB的大叔规定NULL值列表必须用整数个字节的位表示,如果使用的二进制位个数不是整数个字节,则在字节的高位补0。 表record_format_demo只有3个值允许为NULL的列,对应3个二进制位,不足一个字节,所以在字节的高位补0,效果就是这样:

以此类推,如果一个表中有9个允许为NULL,那这个记录的NULL值列表部分就需要2个字节来表示了。

假设我们现在向record_format_demo表中插入一条记录:

INSERT INTO record_format_demo(c1, c2, c3, c4)
    VALUES('eeee', 'fff', NULL, NULL);

这条记录的c1c3c4这3个列中c3c4的值都为NULL,所以这3个列对应的二进制位的情况就是:

所以这记录的NULL值列表用十六进制表示就是:0x06

键值为NULL的记录是怎么在B+树中存放的

对于InnoDB存储引擎来说,记录都是存储在页面中的(一个页面默认是16KB大小),这些页面可以作为B+树的节点而组成一个索引,类似这种样子(只是用下边的图举个B+树的例子而已,跟我们上边列举的表没关系):

聚簇索引和二级索引都对应着像上图一样的B+树(也就是说有多少个索引就有多少棵对应的B+树),不过:

  • 对于聚簇索引索引来说,页面中的记录是按照主键值进行排序的;而对于二级索引来说,页面中的记录是按照给定的索引列的值进行排序的。
  • 对于聚簇索引来说,B+树每一层节点(页面)都是按照页中记录的主键值大小进行排序的;而对于二级索引来说,B+树每一层节点(页面)都是按照页中记录的给定的索引列的值进行排序的。
  • 对于聚簇索引来说,B+树叶子节点对应的页面中存储的是完整的用户记录(就是一条记录中包含我们定义的所有列值,还包含一些InnoDB自己添加的一些隐藏列);而对于二级索引来说,B+树叶子节点对应的页面中存储的只是索引列的值 + 主键值

按规定,一条记录的主键值不允许存储NULL值,所以下边语句中的WHERE子句结果肯定为FALSE

SELECT * FROM tbl_name WHERE primary_key IS NULL;

像这样的语句优化器自己就能判定出WHERE子句必定为NULL,所以压根儿不会去执行它,不信我们看(Extra信息提示WHERE子句压根儿不成立):

对于二级索引来说,索引列的值可能为NULL。那对于索引列值为NULL的二级索引记录来说,它们被放在B+树的哪里呢?答案是:放在B+树的最左边。比方说我们有如下查询语句:

SELECT * FROM s1 WHERE key1 IS NULL;

那它的查询示意图就如下所示:

从图中可以看出,对于s1表的二级索引idx_key1来说,值为NULL的二级索引记录都被放在了B+树的最左边,这是因为设计InnoDB的大叔有这样的规定:

We define the SQL null to be the smallest possible value of a field.

也就是说他们把SQL中的NULL值认为是列中最小的值。

在通过二级索引idx_key1对应的B+树快速定位到叶子节点中符合条件的最左边的那条记录后,也就是本例中id值为521的那条记录之后,就可以顺着每条记录都有的next_record属性沿着由记录组成的单向链表去获取记录了,直到某条记录的key1列不为NULL。

小贴士: 通过B+树快速定位到叶子节点的记录的过程是靠一个所谓的页目录(Page Directory)做到的,不过这不是本文的重点,大家可以到小册中翻看,都有详细解释。

使不使用索引的依据到底是什么?

那既然IS NULLIS NOT NULL!=这些条件都可能使用到索引,那到底什么时候索引,什么时候采用全表扫描呢?

答案很简单:成本。当然,关于如何定量的计算使用某个索引执行查询的成本比较复杂,我们在小册中花了很大的篇幅来唠叨了。不过因为篇幅有限,我们在这里只准备定性的分析一下。对于使用二级索引进行查询来说,成本组成主要有两个方面:

  • 读取二级索引记录的成本
  • 将二级索引记录执行回表操作,也就是到聚簇索引中找到完整的用户记录的操作所付出的成本。

很显然,要扫描的二级索引记录条数越多,那么需要执行的回表操作的次数也就越多,达到了某个比例时,使用二级索引执行查询的成本也就超过了全表扫描的成本(举一个极端的例子,比方说要扫描的全部的二级索引记录,那就要对每条记录执行一遍回表操作,自然不如直接扫描聚簇索引来的快)。

所以MySQL优化器在真正执行查询之前,对于每个可能使用到的索引来说,都会预先计算一下需要扫描的二级索引记录的数量,比方说对于下边这个查询:

SELECT * FROM s1 WHERE key1 IS NULL;

优化器会分析出此查询只需要查找key1值为NULL的记录,然后访问一下二级索引idx_key1,看一下值为NULL的记录有多少(如果符合条件的二级索引记录数量较少,那么统计结果是精确的,如果太多的话,会采用一定的手段计算一个模糊的值,当然算法也比较麻烦,我们就不展开说了,小册里有说),这种在查询真正执行前优化器就率先访问索引来计算需要扫描的索引记录数量的方式称之为index dive。当然,对于某些查询,比方说WHERE子句中有IN条件,并且IN条件中包含许多参数的话,比方说这样:

SELECT * FROM s1 WHERE key1 IN ('a', 'b', 'c', ... , 'zzzzzzz');

这样的话需要统计的key1值所在的区间就太多了,这样就不能采用index dive的方式去真正的访问二级索引idx_key1,而是需要采用之前在背地里产生的一些统计数据去估算匹配的二级索引记录有多少条(很显然根据统计数据去估算记录条数比index dive的方式精确性差了很多)。

反正不论采用index dive还是依据统计数据估算,最终要得到一个需要扫描的二级索引记录条数,如果这个条数占整个记录条数的比例特别大,那么就趋向于使用全表扫描执行查询,否则趋向于使用这个索引执行查询。

理解了这个也就好理解为什么在WHERE子句中出现IS NULLIS NOT NULL!=这些条件仍然可以使用索引,本质上都是优化器去计算一下对应的二级索引数量占所有记录数量的比值而已。

不信谣,不传谣

大家可以看到,MySQL中决定使不使用某个索引执行查询的依据很简单:就是成本够不够小。而不是是否在WHERE子句中用了IS NULLIS NOT NULL!=这些条件。大家以后也多多辟谣吧,没那么复杂,只是一个成本而已。

本文分享自微信公众号 - 苦逼的码农(di201805)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-10-29

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏idba

MySQL add/drop字段时报主键冲突

错误提示是主键冲突,但是当我们去查询 id= 7458421 时,并无此记录。是不是很奇怪?遇到这种情况,一般有如下场景:

17420
来自专栏咖啡拿铁

事务的ACID属性我就是傻傻的分不清。。。

对于大部分程序员来说,他们的任务就是把现实世界的业务场景映射到数据库世界。比如银行为了存储人们的账户信息会建立一个account表:

7710
来自专栏咖啡拿铁

为什么开发人员必须要了解数据库锁?

锁在现实中的意义为:封闭的器物,以钥匙或暗码开启。在计算机中的锁一般用来管理对共享资源的并发访问,比如我们java同学熟悉的Lock,synchronized等...

11220
来自专栏网管叨bi叨

用Docker搭建Laravel开发环境

在这篇文章中我们将通过Docker在个人本地电脑上构建一个快速、轻量级、不依赖本地电脑所安装的任何开发套件的可复制的Laravel和Vue项目的开发环境(开发环...

10010
来自专栏咖啡拿铁

记一次神奇的Mysql死锁排查

说起Mysql死锁,之前写过一次有关Mysql加锁的基本介绍,对于一些基本的Mysql锁或者死锁都有一个简单的认识,可以看下这篇文章为什么开发人员需要了解分布式...

7320
来自专栏AustinDatabases

MYSQL事务他快你慢,都是你自己惹的祸

实际事务DB里面常见的东西,没有事务的DB 那就不是DB ,但同样完成一个功能,并且书写也相似的存储过程逻辑(事务),怎么就快慢不一。

9940
来自专栏咖啡拿铁

聊聊分布式锁

对于锁大家肯定不会陌生,在Java中synchronized关键字和ReentrantLock可重入锁在我们的代码中是经常见的,一般我们用其在多线程环境中控制对...

9910
来自专栏MySQL技术

带你认识MySQL sys schema

MySQL 5.7中引入了一个新的sys schema,sys是一个MySQL自带的系统库,在安装MySQL 5.7以后的版本,使用mysqld进行初始化时,会...

8150
来自专栏网管叨bi叨

MYSQL统计行数时到底应该怎么COUNT

相信每个人在写代码时都有遇到过要获取MYSQL表里数据行数的情况,多数人获取数据表行数时都用COUNT(*),但同时也流传了不少其他方式,比如说COUNT(1)...

9720
来自专栏志学Python

13位Python大牛历时一个月打造的Python系统学习流程图,超详细!

对于刚开始接触Python的小伙伴来说,没有思路方法,不知道从何开始学习,把软件环境安装好后就不知所措了!接下来我给大家分享下多位大牛倾力打造的python系...

10510

扫码关注云+社区

领取腾讯云代金券

年度创作总结 领取年终奖励