边缘计算概念产出乃至当今的应用,继2005年云计算概念提出后,我认为它已经成为云计算发展过程中的发酵必然产物。公司处于物联网领域大军中的一员,以下将直击边缘计算赋能物联网。
三者之间成熟度最高的也就是云计算,在云计算的发展过程中发酵出边缘计算(Edge Computing),甚至碰撞出来一个雾计算(Fog Computing)。
目前阶段概念层面已经很明确了,通过按量付费等网络提供资源,比如:IaaS、Paas 和 SaaS。使得企业可以在自己的物理硬件之外,调度远程服务器进行任务处理及存储等。
思科在2011首创,是相对于云计算而言的。它并非是性能强大的服务器,而是由性能较弱、更为分散的各种功能计算机组成,渗入电器、工厂、汽车、街灯及人们生活中的各种物品。通俗的说,它拓展了云计算(Cloud Computing)的概念,相对于云计算它离产生数据的地方更近,数据、数据相关的处理和应用程序都集中于网络边缘的设备中,而不是几乎全部保存在云端。这里因“云”而“雾”的命名源自“雾是更贴近地面的云”这句话。
边缘计算(Edge Computing)是相对云计算而言的,它是指收集并分析数据的行为发生在靠近数据生成的本地设备和网络中,而不是必须将数据传输到计算资源集中化的云端进行处理。通俗的说,边缘计算是去中心化或分布式的云计算,原始数据不传回云端,而是在本地完成分析处理。
雾计算(Fog Computing)和边缘计算(Edge Computing)有太多相似点,甚至可以互相交换,二者都是试图减少发送云端的数据量,降低延迟提高性能,同时也都将数据处理转移至终端等临近源头。针对二者哪个用起来更好,是用雾计算还是边缘计算?其实并不太重要,取决于应用实例所期望的结果,就如同我们根据业务设计架构一样。即根据业务选用合适的架构。选用方式又怎么判别?一般雾计算过程发生在局域网(LAN)架构上,通过工业网关及嵌入式交互的集中式系统。边缘计算(如图1)过程发生在终端设备本身。
图1 边缘计算架构
边缘计算的核心是在靠近数据源或物的一侧提供计算、存储和应用服务,这与雾计算将计算和分析能力扩展至网络“边缘”的定义非常相近。
图2 三者对比
从市场应用区分纬度,边缘计算主要区分三类:电信运营商边缘计算、企业与物联网边缘计算、工业边缘计算,对于三类之间产生的六种边缘计算业务形态,可以独立一种存在,也可以多种业务形态相辅相成。下图阐述边缘计算分类细节(如图3):
图3 边缘计算分类
图4 边缘计算架构
图中最右侧,云端处理中心仍然是现阶段的云计算中心,边缘计算结果数据将由云中心永久性存储,重量级的分析任务将持续由云中心作业完成。同时进行对边缘计算中心网络分布的策略分发管理等。
边缘计算最终实现可以是设备本身(手环、智能终端等),也可以是临界点网关、路由器等,可以把边缘计算称之为物理世界与虚拟世界的连接枢纽站。因此,如何在动态的网络拓扑中对计算任务进行分配和调度是值得研究的问题。边缘计算层通过合理部署和调配网络边缘侧的计算和存储能力,实现基础服务响应。
终端设备由各种物联网数据采集设备组成,主要进行数据采集,并不考虑它的数据计算能力。将数据导向给边缘节点或云中心,以输入的方式作为载体。
对于三者层面,网络之间可以进行跨层访问,终端是可以直接与云中心通信,云中心也可以直接与终端通信。
边缘网络基本上由终端设备(例如:移动手机、智能物品等)、边缘设备(例如:边界路由器、机顶盒、网桥、基站、无线接入点等)、边缘服务器等构成。这些组件可具有一定性能,更好的进行边缘计算,边缘计算的特点是能够实时、高效、节能地响应用户需求,所以不会对云端进行大量数据的写入。在现有业务场景已经由很多企业在使用,但是对于边缘需要明白边缘这个概念,例如:
值得一提的是,绝大数物联网实际应用面临着处理海量终端的连接和管理、保证分析的实时性和保护工业数据隐私的问题。华为技术有限公司也指出,基于边缘计算的物联网(如EC-IoT、Edge Computing-IoT)可以有效地构建预测性维护方案,并已经推出了设计和部署预测性维护解决方案的服务。华为技术有限公司使用智能网关提供智能服务,对维护对象的关键指标进行实时监测和分析,预测维护对象可能出现的故障,并进行信息上报。
边缘计算解决问题的同时也会带来一些其他挑战,边缘计算的网络层面覆盖很广,需要更多的资源进行协同和对接,因此会出现很多挑战。2016年,美国韦恩州立大学的施巍松教授团队提出,边缘计算面临着可编程性、命名、数据抽象、服务管理、隐私及安全和性能指标优化等6种挑战,其中在可编程性、命名、服务管理和隐私及安全问题上,学术界及工业界已经取得了阶段性的成果,在此仅列出4点:
虽然边缘计算完成了部分数据计算工作,避免了信息在网络传输过程中被窃取的问题,但边缘计算带来了更多设备的接入成本增高,和更容易被入侵的危险。
软件定义网络(Software Defined Networking,SDN),可以较好地对网络及其上的服务进行组织,并进行管理,从而可以初步实现计算链路的建立和管理问题。与此同时,边缘设备需要通过有效的隔离技术来保证服务的可靠性和服务质量。例如在自动驾驶操作系统中,既需要支持车载娱乐满足用户需求, 又需要同时运行自动驾驶任务满足汽车本身驾驶需求,此时,如果车载娱乐的任务干扰了自动驾驶任务,或者影响了整个操作系统的性能,将会引起严重后果,对生命财产安全造成直接损失。
命名数据网络(Named Data Networking,NDN)是一种将数据和服务进行命名和寻址,以P2P和中心化方式相结合进行自组织的一种数据网络。而计算链路的建立,在一定程度上也是数据的关联建立,即数据应该从源到云的传输关系。因此,将NDN引入边缘计算中,通过其建立计算服务的命名并关联数据的流动,从而可以很好地解决计算链路中服务发现的问题。
边缘节点组成的计算平台类似于异构平台,边缘节点的计算与存储能力、运行时间、操作系统和支持语言等资源都可能是不同的,这意味着开发者需要根据不同种类边缘设备的资源进行程序开发。在边缘进行分布式计算并与云端协调任务会让应用编程变得更加复杂。
熟悉整体边缘计算大框架后,我们根据自身情况会学到不同层面的知识点,在此小结给大家推荐边缘计算相关技术《边缘计算白皮书3.0》,边缘计算产业联盟也于2018年12月发布,并提出了边缘计算参考构架3.0。可深入对边缘计算进行其他问题的熟悉。
从物联网发展趋势来看,边缘计算成为必然。边缘计算因给物联网领域中的海量数据传输、实时服务响应等复杂挑战提供了新的解决方案,受到了国内外政府、工业界和学术界的高度关注和认可。边缘计算将云计算的计算、存储等能力扩展到了网络边缘,提供低时延、高可用和隐私保护的本地计算服务,解决了云计算时延高、受网络环境制约等问题。随着各行业物联网的应用,相信之后云计算和边缘计算相辅相成,共同赋能物联网业务应用。