前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >详细介绍 Go 中如何实现 bitset

详细介绍 Go 中如何实现 bitset

作者头像
波罗学
发布2019-11-15 10:24:18
9580
发布2019-11-15 10:24:18
举报
文章被收录于专栏:码神路漫漫码神路漫漫

最近尝试在 B 站录些小视频,我的 B 站主页。录视频当是为了彻底搞懂某个知识点的最后一步吧,同时也希望能习得一些额外的能力。在讲 Go 如何实现 bitset 的时候,发现这块内容有点难讲。思考后,我决定通过文字辅以视频的方式说明,于是就写了这篇文章。

相关代码已经放在了 github,地址如下:go-set-example

如果发现有什么不妥的地方,欢迎大佬们指正,感谢。

bitset 结构

之前我已经写过一篇题为 Go 中如何使用 Set 的文章,其中介绍了 bitset 一种最简单的应用场景,状态标志位,顺便还提了下 bitset 的实现思路。

状态标志和一般的集合有什么区别呢?

我的总结是主要一点,那就是状态标志中元素个数通常是固定的。而一般的集合中,元素个数通常是动态变化的。这会导致什么问题?

一般,我们使用一个整数就足以表示状态标志中的所有状态,最大的 int64 类型,足足有 64 个二进制位,最多可以包含 64 个元素,完全足够使用。但如果是集合,元素数量和值通常都不固定。

比如一个 bitset 集合最初可能只包含 1、2、4 几个元素,只要一个 int64 就能表示。如下:

但如果再增加了一个元素,比如 64(一个 int64 的表示范围是 0-63),这已经超出了一个 int64 能表示的范围。该怎么办?

一个 int64 无法表示,那就用多个呗。此时的结构如下:

一个 int64 切片正好符合上面的结构。那我们就可以定义一个新的类型 BitSet,如下:

代码语言:javascript
复制
type BitSet struct {
	data []int64
	size int
}
复制代码

data 成员用于存放集合元素,切片的特点就是能动态扩容。

还有,因为 bitset 中元素个数无法通过 len 函数获取,而具体的方法相对复杂一点,可增加一个 size 字段记录集合元素的个数。然后就可以增加一个 Size 方法。

代码语言:javascript
复制
func (set *BitSet) Size() int {
	return set.size
}
复制代码

元素位置

定义好了 BitSet 类型,又产生了一个新的问题,如何定位存放元素的位置?在标志位的场景下,元素的值即是位置,所以这个问题不用考虑。但通用的集合不是如此。

先看下 BitSet 的二进制位的分布情况。

类似行列的效果,假设用 index 表示行(索引),pos 表示列(位置)。切片索引从 0 到 n,n 与集合中的最大元素有关。

接下来确定 indexpos 的值。其实,之前的文章已经介绍过了。

index 可通过元素值整除字长,即 value / 64,转化为高效的位运算,即 value >> 6

pos 可以通过元素值取模字长,即 value % 64,转化为高效的位运算,即 value & 0x3f,获取对应位置,然后用 1 << uint(value % 0xf) 即可将位置转化为值。

代码实现

理论再多,都不如 show me your code。开始编写代码吧!

先定义一些常量。

代码语言:javascript
复制
const (
	shift = 6    // 2^n = 64 的 n
	mask  = 0x3f // n=6,即 2^n - 1 = 63,即 0x3f
)
复制代码

就是前面提到的用于计算 indexpos 的两个常量。

提供两个函数,用于方便 indexpos 上对应值的计算,代码如下:

代码语言:javascript
复制
func index(n int) int {
	return n >> shift
}

// 相对于标志位使用场景中某个标志的值
func posVal(n int) uint64 {
	return 1 << uint(n&mask)
}
复制代码

构造函数

提供了一个函数,用于创建初始 BitSet,且支持设置初始的元素。

函数原型如下:

代码语言:javascript
复制
func NewBitSet(ns ...int) *BitSet {
	// ...
}
复制代码

输出参数 ns 是一个 int 类型的变长参数,用于设置集合中的初始值。

如果输入参数 ns 为空的话,new(BitSet) 返回空集合即可。

代码语言:javascript
复制
if len(ns) == 0 {
	return new(BitSet)
}
复制代码

如果长度非空,则要计算要开辟的空间,通过计算最大元素的 index 可确定。

代码语言:javascript
复制
// 计算多 bitset 开辟多个空间
max := ns[0]
for _, n := range ns {
	if n > max {
		max = n
	}
}

// 如果 max < 0,直接返回空。
if max < 0 {
	return new(BitSet)
}

// 通过 max >> shift+1 计算最大值 max 所在 index
// 而 index + 1 即为要开辟的空间
s := &BitSet{
	data: make([]int64, index(max)+1),
}
复制代码

现在,可以向 BitSet 中添加元素了。

代码语言:javascript
复制
for _, n := range ns {
	if n >= 0 {
		// e >> shift 获取索引位置,即行,一般叫 index
		// e&mask 获取所在列,一般叫 pos,F1 0 F2 1
		s.data[n>>shift] |= posVal(n)
		// 增加元素个数
		s.size++
	}
}

// 返回创建的 BitSet
return s
复制代码

元素已经全部添加完成!

BitSet 的方法

接下来是重点了,为 BitSet 增加一些方法。主要是分成两类,一是常见的增删查等基础方法,二是集合的特有操作,交并差。

基础方法

主要是几个方法,分别是 Add(增加)、Clear(清除) 、Contains(检查)以及返回元素个数。如果要有更好的性能和空间使用率,AddClear 还有考虑灵活的。

contains

先讲 Contains,即检查是否存在某个元素。

函数定义如下:

代码语言:javascript
复制
func (set *BitSet) Contains(n int) bool {
	...
}
复制代码

输入参数即是要检查的元素,输出是检查结果。

实现代码如下:

代码语言:javascript
复制
// 获取元素对应的 int64 的位置,如果超出 data 能表示的范围,直接返回。
i := index(n)
if i >= len(set.data) {
	return false
}

return set.data[i]&posVal(n) != 0
复制代码

核心就是 set.data[i]&posVal(n) != 0 这句代码,通过它判断是否存在指定元素。

clear

再谈 Clear,从集合中清除某个元素,

函数定义如下:

代码语言:javascript
复制
func (set *BitSet) Clear(n int) *BitSet {
	// ...
}
复制代码

实现代码如下:

代码语言:javascript
复制
// 元素不能小于 0
if n < 0 {
	return set
}

// 计算切片索引位置,如果超出当前索引表示的范围,返回即可。
i := index(n)
if i >= len(set.data) {
	return set
}

// 检查是否存在元素
if d[i]&posVal(n) != 0 {
	set.data[i] &^= posVal(n)
	set.size--
}
复制代码

通过 &^ 实现指定位清除。同时要记得set.size-- 更新集合中元素的值。

上面的实现中有个瑕疵,就是如果一些为被置零后,可能会出现高位全部为 0,此时应要通过 reslice 收缩 data 空间。

具体怎么操作呢?

通过对 set.data 执行检查,从高位检查首个不为 0 的 uint64,以此为基准进行 reslice。假设,这个方法名为 trim

实现代码如下:

代码语言:javascript
复制
func (set *Set) trim() {
	d := set.data
	n := len(d) - 1
	for n >= 0 && d[n] == 0 {
		n--
	}
	set.data = d[:n+1]
}
复制代码

add

接着,再说 Add 方法,向集合中添加某个元素。

函数定义如下:

代码语言:javascript
复制
func (set *BitSet) Add(n int) *BitSet {
	...
}
复制代码

增加元素的话,先检查下是否有足够空间存放新元素。如果新元素的索引位置不在当前 data 表示的范围,则要进行扩容。

实现如下:

代码语言:javascript
复制
// 检测是否有足够的空间存放新元素
i := index(n)
if i >= len(set.data) {
	// 扩容大小为 i+1
	ndata := make([]uint64, i+1)
	copy(ndata, set.data)
	set.data = ndata
}
复制代码

一切准备就绪后,接下来就可以进行置位添加了。在添加前,先检测下集合是否已经包含了该元素。在添加完成后,还要记得要更新下 size

实现代码如下:

代码语言:javascript
复制
if set.data[i]&posVal(n) == 0 {
	// 设置元素到集合中
	set.data[i] |= posVal(n)
	s.size++
}
复制代码

好了!基础的方法就介绍这么多吧。

当然,这里的方法还可以增加更多,比如查找当前元素的下一个元素,将某个范围值都添加进集合等等等。

集合方法

介绍完了基础的方法,再继续介绍集合一些特有的方法,交并差。

computeSize

在正式介绍这些方法前,先引入一个辅助方法,用于计算集合中的元素个数。之所以要引入这个方法,是因为交并差没有办法像之前在增删的时候更新 size,要重新计算一下。

实现代码如下:

代码语言:javascript
复制
func (set *BitSet) computeSize() int {
	d := set.data
	n := 0
	for i, len := 0, len(d); i < len; i++ {
		if w := d[i]; w != 0 {
			n += bits.OnesCount64(w)
		}
	}

	return n
}
复制代码

这是一个不可导出的方法,只能内部使用。遍历 data 的每个 uint64,如果非 0,则统计其中的元素个数。元素个数统计用到了标准库中的 bits.OnesCount64 方法。

方法定义

继续介绍集合的几个方法,它们的定义类似,都是一个 BitSet 与另一个 BitSet 的运算,如下:

代码语言:javascript
复制
// 交集
func (set *BitSet) Intersect(other *BitSet) *BitSet {
	// ...
}
// 并集
func (set *BitSet) Union(other *BitSet) *BitSet {
	// ...
}
// 差集
func (set *BitSet) Difference(other *BitSet) *BitSet {
	// ...
}
复制代码

intersect

先介绍 Intersect,即计算交集的方法。

一个重要前提,因为交集是 与运算,结果肯定位于两个参与运算的那个小范围集合中,所以,开辟空间和遍历可以缩小到这个范围进行。

实现代码如下:

代码语言:javascript
复制
// 首先,获取这个小范围的集合的长度
minLen := min(len(set.data), len(other.data))

// 以 minLen 开辟空间
intersectSet := &BitSet{
	data: make([]uint64, minLen),
}

// 以 minLen 进行遍历计算交集
for i := minLen - 1; i >= 0; i-- {
	intersectSet.data[i] = set.data[i] & other.data[i]
}

intersectSet.size = set.computeSize()
复制代码

这里通过遍历逐一对每个 uint64 执行 与运算 实现交集。在完成操作后,记得计算下 intersectSet 中元素个数,即 size 的值。

union

再介绍并集 Union 方法。

它的计算逻辑和 Intersect 相反。并集结果所占据的空间和以参与运算的两个集合的较大集合为准。

实现代码如下:

代码语言:javascript
复制
var maxSet, minSet *BitSet
if len(set.data) > len(other.data) {
	maxSet, minSet = set, other
} else {
	maxSet, minSet = other, set
}

unionSet := &BitSet{
	data: make([]uint64, len(maxSet.data)),
}
复制代码

创建的 unionSet 中,data 分配空间是 len(maxSet.data)

因为两个集合中的所有元素满足最终结果,但 maxSet 的高位部分无法通过遍历和 minSet 执行运算,直接拷贝进结果中即可。

代码语言:javascript
复制
minLen := len(minSet.data)
copy(unionSet.data[minLen:], maxSet.data[minLen:])
复制代码

最后,遍历两个集合 data,通过 或运算 计算剩余的部分。

代码语言:javascript
复制
for i := 0; i < minLen; i++ {
	unionSet.data[i] = set.data[i] | other.data[i]
}

// 更新计算 size
unionSet.size = unionSet.computeSize()
复制代码

difference

介绍最后一个与集合相关的方法,Difference,即差集操作。

差集计算结果 differenceSet 的分配空间由被减集合 set 决定。其他的操作和 IntersectUnion 类似,位运算通过 &^ 实现。

代码语言:javascript
复制
setLen := len(set.data)

differenceSet := &BitSet{
	data: make([]uint64, setLen),
}
复制代码

如果 set 的长度大于 other,则需要先将无法进行差集运算的内容拷贝下。

代码语言:javascript
复制
minLen := setLen
if setLen > otherLen {
	copy(differenceSet.data[otherLen:], set.data[otherLen:])
	minLen = otherLen
}
复制代码

记录下 minLen 用于接下来的位运算。

代码语言:javascript
复制
// 遍历 data 执行位运算。
for i := 0; i < minLen; i++ {
	differenceSet.data[i] = set.data[i] &^ other.data[i]
}

differenceSet.size = differenceSet.computeSize()
复制代码

遍历集合的元素

单独说下集合元素的遍历,之前查看集合元素一直都是通过 Contains 方法检查是否存在。能不能把集合中的每个元素全部遍历出来呢?

再看下 bitset 的结构,如下:

上面的集合中,第一行 int64 的第一个元素是 1,尾部有一位被置零。通过观察发现,前面有几个 0,第一个元素就是什么值。

第二行 int64 的第一元素尾部没有 0,那它的值就是 0 吗?当然不是,还有前面一行的 64 位基础,所以它的值是 64+0。

总结出什么规律了吗?笨,理论功底太差,满脑子明白,就是感觉写不清楚。看代码吧!

先看函数定义:

代码语言:javascript
复制
func (set *BitSet) Visit(do func(int) (skip bool)) (aborted bool) {
	//...
}
复制代码

输入参数是一个回调函数,通过它获取元素的值,不然每次都要写一大串循环运算逻辑,不太可能。回调函数的返回值 bool,表明是否继续遍历。Visit 的返回值表明是函数是非正常结束的。

实现代码如下:

代码语言:javascript
复制
d := set.data
for i, len := 0, len(d); i < len; i++ {
	w := d[i]
	if w == 0 {
		continue
	}

	// 理论功力不好,不知道怎么描述了。哈哈
	// 这小段代码可以理解为从元素值到 index 的逆运算,
	// 只不过得到的值是诸如 0、64、128 的第一个位置的值。
	// 0 << 6,还是 0,1 << 6 就是 64,2 << 6 的就是 128
	n := i << shift 
	for w != 0 {
		// 000.....000100 64~128 的话,表示 66,即 64 + 2,这个 2 可以由结尾 0 的个数确定
		// 那怎么获取结果 0 的个数呢?可以使用 bits.TrailingZeros64 函数
		b := bits.TrailingZeros64(w)
		if do(n + b) {
			return true
		}
		// 将已经检查的位清零
		// 为了保证尾部 0 的个数能代表元素的值
		w &^= 1 << uint64(b) 
	}
}
复制代码

使用也非常方便,示例代码如下:

代码语言:javascript
复制
set := NewBitSet(1, 2, 10, 99)
set.Visit(func(n int) bool {
	fmt.Println(n)
	return false
})
复制代码

好了,就说这么多吧!

总结

本篇文章主要是参考了几个开源包的基础上,介绍了 bitset 的实现,比如 bitbitset 等。总的来说,位运算就是没有那么直观,感觉脑子不够用了。

感悟

最近在深挖 Go 语言,渐渐发现了自己的一些短板,理论知识的缺失渐渐显现。比如,我在写这篇文章的时候,了解到 bits 标准库中用到了 德布鲁因序列,此前并不清楚。前几天在研究如何进行 JSON 解析时,了解到了有限状态机这个知识,Go 的源码中简直完美体现了这个知识的重要性。在学习 Go 语言组成的时候,知道了 扩展巴克斯范式,很多语言的文档都是这种方式来表现语法,一门了然。

作为一名电子信息专业毕业的专科生,算不上计算机的科班出生,工作六年才了解到这些知识,有点烦闷,也有点兴奋。如果说前六年是广度的提升,那么,接下来就应该是更加专注的研究了。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2019年11月07日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • bitset 结构
  • 元素位置
  • 代码实现
  • 构造函数
  • BitSet 的方法
  • 基础方法
    • contains
      • clear
        • add
        • 集合方法
          • computeSize
            • 方法定义
              • intersect
                • union
                  • difference
                  • 遍历集合的元素
                  • 总结
                  • 感悟
                  领券
                  问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档