前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >深度学习可解释性相关论文和代码大全

深度学习可解释性相关论文和代码大全

作者头像
代码医生工作室
发布2019-11-15 11:55:07
1.2K0
发布2019-11-15 11:55:07
举报
文章被收录于专栏:相约机器人相约机器人

今天为大家介绍一个非常全的资源,全部是与深度学习的可解释性有关。链接如下:

https://github.com/lopusz/awesome-interpretable-machine-learning

该链接中包含了与深度学习可解释性有关的全部论文,以及部分代码。具体内容如下。

Interpretable Models

  • Interpretable models
    • Simple decision trees
    • Rules
    • (Regularized) linear regression
    • k-NN
  • (2008) Predictive learning via rule ensembles by Jerome H. Friedman, Bogdan E. Popescu
    • https://dx.doi.org/10.1214/07-AOAS148
  • (2014) Comprehensible classification models by Alex A. Freitas
    • https://dx.doi.org/10.1145/2594473.2594475
    • http://www.kdd.org/exploration_files/V15-01-01-Freitas.pdf
    • Interesting discussion of interpretability for a few classification models (decision trees, classification rules, decision tables, nearest neighbors and Bayesian network classifier)
  • (2015) Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model by Benjamin Letham, Cynthia Rudin, Tyler H. McCormick, David Madigan
    • https://arxiv.org/pdf/1511.01644
    • https://dx.doi.org/10.1214/15-AOAS848
  • (2017) Learning Explanatory Rules from Noisy Data by Richard Evans, Edward Grefenstette
    • https://arxiv.org/pdf/1711.04574

Feature Importance

  • Models offering feature importance measures
    • (2015) rFerns: An Implementation of the Random Ferns Method for General-Purpose Machine Learning by Miron B. Kursa
    • https://dx.doi.org/10.18637/jss.v061.i10
    • https://cran.r-project.org/web/packages/rFerns
    • https://notabug.org/mbq/rFerns
    • (2006) Extremely randomized trees by Pierre Geurts, Damien Ernst, Louis Wehenkel
    • https://dx.doi.org/10.1007/s10994-006-6226-1
    • Random forest
    • Boosted trees
    • Extremely randomized trees
    • Random ferns
    • Linear regression (with a grain of salt)
  • (2007) Bias in random forest variable importance measures: Illustrations, sources and a solution by Carolin Strobl, Anne-Laure Boulesteix, Achim Zeileis, Torsten Hothorn
    • https://dx.doi.org/10.1186/1471-2105-8-25
  • (2008) Conditional Variable Importance for Random Forests by Carolin Strobl, Anne-Laure Boulesteix, Thomas Kneib, Thomas Augustin, Achim Zeileis
    • https://dx.doi.org/10.1186/1471-2105-9-307
  • (2018) Model Class Reliance: Variable Importance Measures for any Machine Learning Model Class, from the “Rashomon” Perspective by Aaron Fisher, Cynthia Rudin, Francesca Dominici
    • https://arxiv.org/pdf/1801.01489
    • https://github.com/aaronjfisher/mcr
    • Universal (model agnostic) variable importance measure
  • (2019) Please Stop Permuting Features: An Explanation and Alternatives by Giles Hooker, Lucas Mentch
    • https://arxiv.org/pdf/1905.03151
    • Paper advocating against feature permutation for importance
  • (2018) Visualizing the Feature Importance for Black Box Models by Giuseppe Casalicchio, Christoph Molnar, Bernd Bischl
    • https://arxiv.org/pdf/1804.06620
    • https://github.com/giuseppec/featureImportance
    • Global and local (model agnostic) variable importance measure (based on Model Reliance)
  • Very good blog post describing deficiencies of random forest feature importance and the permutation importance
    • http://explained.ai/rf-importance/index.html
  • Permutation importance - simple model agnostic approach is described in Eli5 documentation
    • https://eli5.readthedocs.io/en/latest/blackbox/permutation_importance.html

Feature Selection

  • Classification of feature selection methods
    • Filters
    • Wrappers
    • Embedded methods
  • (2003) An Introduction to Variable and Feature Selection by Isabelle Guyon, André Elisseeff
    • http://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf
    • Be sure to read this very illustrative introduction to feature selection
  • Filter Methods
    • https://arxiv.org/pdf/1711.08477
    • https://arxiv.org/pdf/1711.08421
    • http://www.cs.man.ac.uk/~gbrown/publications/pocockPhDthesis.pdf
    • http://www.jmlr.org/papers/volume13/brown12a/brown12a.pdf
    • Code: https://github.com/Craigacp/FEAST
    • Discusses various approaches based on mutual information (MIM, mRMR, MIFS, CMIM, JMI, DISR, ICAP, CIFE, CMI)
    • https://dx.doi.org/10.1007/11732242_9
    • https://pdfs.semanticscholar.org/d72f/f5063520ce4542d6d9b9e6a4f12aafab6091.pdf
    • Introduces information theoretic methods - double input symmetrical relevance (DISR)
    • (2006) On the Use of Variable Complementarity for Feature Selection in Cancer Classification by Patrick Meyer, Gianluca Bontempi
    • (2012) Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection by Gavin Brown, Adam Pocock, Ming-Jie Zhao, Mikel Luján
    • (2012) Feature selection via joint likelihood by Adam Pocock
    • (2017) Relief-Based Feature Selection: Introduction and Review by Ryan J. Urbanowicz, Melissa Meeker, William LaCava, Randal S. Olson, Jason H. Moore
    • (2017) Benchmarking Relief-Based Feature Selection Methods for Bioinformatics Data Mining by Ryan J. Urbanowicz, Randal S. Olson, Peter Schmitt, Melissa Meeker, Jason H. Moore
  • Wrapper methods
    • https://cran.r-project.org/web/packages/Boruta/vignettes/inahurry.pdf
    • https://dx.doi.org/10.18637/jss.v036.i11
    • https://cran.r-project.org/web/packages/Boruta/
    • Code (official, R): https://notabug.org/mbq/Boruta/
    • Code (Python): https://github.com/scikit-learn-contrib/boruta_py
    • (2015) Feature Selection with theBorutaPackage by Miron B. Kursa, Witold R. Rudnicki
    • Boruta for those in a hurry
  • General
    • http://www.jmlr.org/papers/volume8/nilsson07a/nilsson07a.pdf
    • Discusses minimal optimal vs all-relevant approaches to feature selection
    • Paper: https://papers.nips.cc/paper/2728-result-analysis-of-the-nips-2003-feature-selection-challenge.pdf
    • Website http://clopinet.com/isabelle/Projects/NIPS2003/
    • http://www.jmlr.org/papers/special/feature03.html
    • https://pdfs.semanticscholar.org/a83b/ddb34618cc68f1014ca12eef7f537825d104.pdf
    • Classic paper discussing weakly relevant features, irrelevant features, strongly relevant features
    • (1994) Irrelevant Features and the Subset Selection Problem by George John, Ron Kohavi, Karl Pfleger
    • (2003) Special issue of JMLR of feature selection - oldish (2003)
    • (2004) Result Analysis of the NIPS 2003 Feature Selection Challenge by Isabelle Guyon, Steve Gunn, Asa Ben-Hur, Gideon Dror
    • (2007) Consistent Feature Selection for Pattern Recognition in Polynomial Time by Roland Nilsson, José Peña, Johan Björkegren, Jesper Tegnér
  • Feature Engineering and Selection by Kuhn & Johnson
    • Sligtly off-topic, but very interesting book
    • http://www.feat.engineering/index.html
    • https://bookdown.org/max/FES/
    • https://github.com/topepo/FES
  • Feature Engineering presentation by H. J. van Veen
    • Slightly off-topicm but very interesting deck of slides
    • Slides: https://www.slideshare.net/HJvanVeen/feature-engineering-72376750

Model Explanations

Philosophy

  • Magnets by R. P. Feynman https://www.youtube.com/watch?v=wMFPe-DwULM
  • (2002) Looking Inside the Black Box, presentation of Leo Breiman
    • https://www.stat.berkeley.edu/users/breiman/wald2002-2.pdf
  • (2011) To Explain or to Predict? by Galit Shmueli
    • https://arxiv.org/pdf/1101.0891
    • https://dx.doi.org/10.1214/10-STS330
  • (2016) The Mythos of Model Interpretability by Zachary C. Lipton
    • https://arxiv.org/pdf/1606.03490
    • https://www.youtube.com/watch?v=mvzBQci04qA
  • (2017) Towards A Rigorous Science of Interpretable Machine Learning by Finale Doshi-Velez, Been Kim
    • https://arxiv.org/pdf/1702.08608
  • (2017) The Promise and Peril of Human Evaluation for Model Interpretability by Bernease Herman
    • https://arxiv.org/pdf/1711.07414
  • (2018) The Book of Why: The New Science of Cause and Effect by Judea Pearl
  • http://bayes.cs.ucla.edu/WHY/why-intro.pdf
  • (2018) Please Stop Doing the “Explainable” ML by Cynthia Rudin
    • Video (starts 17:30, lasts 10 min): https://zoom.us/recording/play/0y-iI9HamgyDzzP2k_jiTu6jB7JgVVXnjWZKDMbnyRTn3FsxTDZy6Wkrj3_ekx4J
    • Linked at: https://users.cs.duke.edu/~cynthia/mediatalks.html
  • (2018) Explaining Explanations: An Approach to Evaluating Interpretability of Machine Learning by Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael Specter, Lalana Kagal
    • https://arxiv.org/pdf/1806.00069
  • (2019) Interpretable machine learning: definitions, methods, and applications by W. James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, Bin Yu
    • https://arxiv.org/pdf/1901.04592
  • (2019) On Explainable Machine Learning Misconceptions A More Human-Centered Machine Learning by Patrick Hall
    • https://github.com/jphall663/xai_misconceptions/blob/master/xai_misconceptions.pdf
    • https://github.com/jphall663/xai_misconceptions
  • (2019) An Introduction to Machine Learning Interpretability. An Applied Perspective on Fairness, Accountability, Transparency, and Explainable AI by Patrick Hall and Navdeep Gill
    • https://www.h2o.ai/wp-content/uploads/2019/08/An-Introduction-to-Machine-Learning-Interpretability-Second-Edition.pdf

Model Agnostic Explanations

  • (2009) How to Explain Individual Classification Decisions by David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen, Klaus-Robert Mueller
    • https://arxiv.org/pdf/0912.1128
  • (2013) Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation by Alex Goldstein, Adam Kapelner, Justin Bleich, Emil Pitkin
    • https://arxiv.org/pdf/1309.6392
  • (2016) “Why Should I Trust You?”: Explaining the Predictions of Any Classifier by Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin
    • https://arxiv.org/pdf/1602.04938
    • Code: https://github.com/marcotcr/lime
    • https://github.com/marcotcr/lime-experiments
    • https://www.youtube.com/watch?v=bCgEP2zuYxI
    • Introduces the LIME method (Local Interpretable Model-agnostic Explanations)
  • (2016) A Model Explanation System: Latest Updates and Extensions by Ryan Turner
    • https://arxiv.org/pdf/1606.09517
    • http://www.blackboxworkshop.org/pdf/Turner2015_MES.pdf
  • (2017) Understanding Black-box Predictions via Influence Functions by Pang Wei Koh, Percy Liang
    • https://arxiv.org/pdf/1703.04730
  • (2017) A Unified Approach to Interpreting Model Predictions by Scott Lundberg, Su-In Lee
    • https://arxiv.org/pdf/1705.07874
    • Code: https://github.com/slundberg/shap
    • Introduces the SHAP method (SHapley Additive exPlanations), generalizing LIME
  • (2018) Anchors: High-Precision Model-Agnostic Explanations by Marco Ribeiro, Sameer Singh, Carlos Guestrin
    • https://homes.cs.washington.edu/~marcotcr/aaai18.pdf
    • Code: https://github.com/marcotcr/anchor-experiments
  • (2018) Learning to Explain: An Information-Theoretic Perspective on Model Interpretation by Jianbo Chen, Le Song, Martin J. Wainwright, Michael I. Jordan
    • https://arxiv.org/pdf/1802.07814
  • (2018) Explanations of model predictions with live and breakDown packages by Mateusz Staniak, Przemyslaw Biecek
    • https://arxiv.org/pdf/1804.01955
    • Docs: https://mi2datalab.github.io/live/
    • Code: https://github.com/MI2DataLab/live
    • Docs: https://pbiecek.github.io/breakDown
    • Code: https://github.com/pbiecek/breakDown
  • (2018) A review book - Interpretable Machine Learning. A Guide for Making Black Box Models Explainable by Christoph Molnar
    • https://christophm.github.io/interpretable-ml-book/
  • (2019) Quantifying Interpretability of Arbitrary Machine Learning Models Through Functional Decomposition by Christoph Molnar, Giuseppe Casalicchio, Bernd Bischl
    • https://arxiv.org/pdf/1904.03867

Model Specific Explanations - Neural Networks

  • (2013) Visualizing and Understanding Convolutional Networks by Matthew D Zeiler, Rob Fergus
    • https://arxiv.org/pdf/1311.2901
  • (2013) Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps by Karen Simonyan, Andrea Vedaldi, Andrew Zisserman
    • https://arxiv.org/pdf/1312.6034
  • (2015) Understanding Neural Networks Through Deep Visualization by Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, Hod Lipson
    • https://arxiv.org/pdf/1506.06579
    • https://github.com/yosinski/deep-visualization-toolbox
  • (2016) Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization by Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, Dhruv Batra
    • https://arxiv.org/pdf/1610.02391
  • (2016) Generating Visual Explanations by Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt Schiele, Trevor Darrell
    • https://arxiv.org/pdf/1603.08507
  • (2016) Rationalizing Neural Predictions by Tao Lei, Regina Barzilay, Tommi Jaakkola
    • https://arxiv.org/pdf/1606.04155
    • https://people.csail.mit.edu/taolei/papers/emnlp16_rationale_slides.pdf
    • Code: https://github.com/taolei87/rcnn/tree/master/code/rationale
  • (2016) Gradients of Counterfactuals by Mukund Sundararajan, Ankur Taly, Qiqi Yan
    • https://arxiv.org/pdf/1611.02639
  • Pixel entropy can be used to detect relevant picture regions (for CovNets)
    • (2017) High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks by Krzysztof J. Geras, Stacey Wolfson, Yiqiu Shen, Nan Wu, S. Gene Kim, Eric Kim, Laura Heacock, Ujas Parikh, Linda Moy, Kyunghyun Cho
    • https://arxiv.org/pdf/1703.07047
    • See Visualization section and Fig. 5 of the paper
  • (2017) SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability by Maithra Raghu, Justin Gilmer, Jason Yosinski, Jascha Sohl-Dickstein
    • https://arxiv.org/pdf/1706.05806
    • https://research.googleblog.com/2017/11/interpreting-deep-neural-networks-with.html
  • (2017) Visual Explanation by Interpretation: Improving Visual Feedback Capabilities of Deep Neural Networks by Jose Oramas, Kaili Wang, Tinne Tuytelaars
    • https://arxiv.org/pdf/1712.06302
  • (2017) Axiomatic Attribution for Deep Networks by Mukund Sundararajan, Ankur Taly, Qiqi Yan
    • https://arxiv.org/pdf/1703.01365
    • Code: https://github.com/ankurtaly/Integrated-Gradients
    • Proposes Integrated Gradients Method
    • See also: Gradients of Counterfactuals https://arxiv.org/pdf/1611.02639.pdf
  • (2017) Learning Important Features Through Propagating Activation Differences by Avanti Shrikumar, Peyton Greenside, Anshul Kundaje
    • https://arxiv.org/pdf/1704.02685
    • Proposes Deep Lift method
    • Code: https://github.com/kundajelab/deeplift
    • Videos: https://www.youtube.com/playlist?list=PLJLjQOkqSRTP3cLB2cOOi_bQFw6KPGKML
  • (2017) The (Un)reliability of saliency methods by Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T. Schütt, Sven Dähne, Dumitru Erhan, Been Kim
    • https://arxiv.org/pdf/1711.0867
    • Review of failures for methods extracting most important pixels for prediction
  • (2018) Classifier-agnostic saliency map extraction by Konrad Zolna, Krzysztof J. Geras, Kyunghyun Cho
    • https://arxiv.org/pdf/1805.08249
  • Classifier-agnostic Saliency Map Extraction
    • Code: https://github.com/kondiz/casme
  • (2018) The Building Blocks of Interpretability
    • https://distill.pub/2018/building-blocks
    • Has some embeded links to notebooks
    • Uses Lucid library https://github.com/tensorflow/lucid
  • (2018) Hierarchical interpretations for neural network predictions by Chandan Singh, W. James Murdoch, Bin Yu
    • https://arxiv.org/pdf/1806.05337
    • Code: https://github.com/csinva/hierarchical_dnn_interpretations
  • (2018) iNNvestigate neural networks! by Maximilian Alber, Sebastian Lapuschkin, Philipp Seegerer, Miriam Hägele, Kristof T. Schütt, Grégoire Montavon, Wojciech Samek, Klaus-Robert Müller, Sven Dähne, Pieter-Jan Kindermans
    • https://arxiv.org/pdf/1808.04260
    • Code: https://github.com/albermax/innvestigate
  • (2018) YASENN: Explaining Neural Networks via Partitioning Activation Sequences by Yaroslav Zharov, Denis Korzhenkov, Pavel Shvechikov, Alexander Tuzhilin
    • https://arxiv.org/pdf/1811.02783
  • (2019) Attention is not Explanation by Sarthak Jain, Byron C. Wallace
    • https://arxiv.org/pdf/1902.10186
  • (2019) Attention Interpretability Across NLP Tasks by Shikhar Vashishth, Shyam Upadhyay, Gaurav Singh Tomar, Manaal Faruqui
    • https://arxiv.org/pdf/1909.11218

Extracting Interpretable Models From Complex Ones

  • (2017) Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples by Gail Weiss, Yoav Goldberg, Eran Yahav
    • https://arxiv.org/pdf/1711.09576
  • (2017) Distilling a Neural Network Into a Soft Decision Tree by Nicholas Frosst, Geoffrey Hinton
    • https://arxiv.org/pdf/1711.09784
  • (2017) Detecting Bias in Black-Box Models Using Transparent Model Distillation by Sarah Tan, Rich Caruana, Giles Hooker, Yin Lou
    • http://www.aies-conference.com/2018/contents/papers/main/AIES_2018_paper_96.pdf

Model Visualization

  • Visualizing Statistical Models: Removing the blindfold
    • http://had.co.nz/stat645/model-vis.pdf
  • Partial dependence plots
    • http://scikit-learn.org/stable/auto_examples/ensemble/plot_partial_dependence.html
    • pdp: An R Package for Constructing Partial Dependence Plots https://journal.r-project.org/archive/2017/RJ-2017-016/RJ-2017-016.pdf https://cran.r-project.org/web/packages/pdp/index.html
  • ggfortify: Unified Interface to Visualize Statistical Results of Popular R Packages
    • https://journal.r-project.org/archive/2016-2/tang-horikoshi-li.pdf
    • CRAN https://cran.r-project.org/web/packages/ggfortify/index.html
  • RandomForestExplainer
    • CRAN https://cran.r-project.org/web/packages/randomForestExplainer/index.html
    • Code: https://github.com/MI2DataLab/randomForestExplainer
    • Master thesis https://rawgit.com/geneticsMiNIng/BlackBoxOpener/master/randomForestExplainer_Master_thesis.pdf
    • R code
  • ggRandomForest
    • CRAN https://cran.r-project.org/web/packages/ggRandomForests/index.html
    • Code: https://github.com/ehrlinger/ggRandomForests
    • Paper (vignette) https://github.com/ehrlinger/ggRandomForests/raw/master/vignettes/randomForestSRC-Survival.pdf
    • R code

Selected Review Talks and Tutorials

  • Tutorial on Interpretable machine learning at ICML 2017
    • Slides: http://people.csail.mit.edu/beenkim/papers/BeenK_FinaleDV_ICML2017_tutorial.pdf
  • P. Biecek, Show Me Your Model - Tools for Visualisation of Statistical Models
    • Video: https://channel9.msdn.com/Events/useR-international-R-User-conferences/useR-International-R-User-2017-Conference/Show-Me-Your-Model-tools-for-visualisation-of-statistical-models
  • S. Ritchie, Just-So Stories of AI
    • Video: https://www.youtube.com/watch?v=DiWkKqZChF0
    • Slides: https://speakerdeck.com/sritchie/just-so-stories-for-ai-explaining-black-box-predictions
  • C. Jarmul, Towards Interpretable Accountable Models
    • Video: https://www.youtube.com/watch?v=B3PtcF-6Dtc
    • Slides: https://docs.google.com/presentation/d/e/2PACX-1vR05kpagAbL5qo1QThxwu44TI5SQAws_UFVg3nUAmKp39uNG0xdBjcMA-VyEeqZRGGQtt0CS5h2DMTS/embed?start=false&loop=false&delayms=3000
  • I. Oszvald, Machine Learning Libraries You’d Wish You’d Known About
    • A large part of the talk covers model explanation and visualization
    • Video: https://www.youtube.com/watch?v=nDF7_8FOhpI
    • Associated notebook on explaining regression predictions: https://github.com/ianozsvald/data_science_delivered/blob/master/ml_explain_regression_prediction.ipynb
  • G. Varoquaux, Understanding and diagnosing your machine-learning models (covers PDP and Lime among others)
    • Video: https://www.youtube.com/watch?v=kbj3llSbaVA
    • Slides: http://gael-varoquaux.info/interpreting_ml_tuto/

Venues

  • Interpretable ML Symposium (NIPS 2017) (contains links to papers, slides and videos)
    • https://www.youtube.com/watch?v=2hW05ZfsUUo
    • http://interpretable.ml/
    • Debate, Interpretability is necessary in machine learning
  • Workshop on Human Interpretability in Machine Learning (WHI), organised in conjunction with ICML
    • https://sites.google.com/site/2016whi/
    • Proceedings https://arxiv.org/html/1607.02531
    • https://sites.google.com/view/whi2017/home
    • Proceedings https://arxiv.org/html/1708.02666
    • https://sites.google.com/view/whi2018
    • Proceedings https://arxiv.org/html/1807.01308
  • Analyzing and interpreting neural networks for NLP (BlackboxNLP), organised in conjunction with EMNLP
    • https://blackboxnlp.github.io/2018
    • https://blackboxnlp.github.io/program.html
    • List of papers
    • https://blackboxnlp.github.io/
    • https://blackboxnlp.github.io/program.html
    • Papers should be available on arXiv
    • 2019 (links below may get prefixed by 2019 later on)
    • 2018
  • FAT/ML Fairness, Accountability, and Transparency in Machine Learning https://www.fatml.org/
    • 2019 (links below may get prefixed by 2019 later on)
    • 2018
    • http://www.aies-conference.com/accepted-papers/
    • http://www.aies-conference.com/2018/accepted-papers/
    • http://www.aies-conference.com/2018/accepted-student-papers/
    • AAAI/ACM Annual Conferenceon AI, Ethics, and Society
    • https://www.fatml.org/schedule/2014
    • https://www.fatml.org/schedule/2015
    • https://www.fatml.org/schedule/2016
    • https://www.fatml.org/schedule/2016
    • https://www.fatml.org/schedule/2017
    • https://www.fatml.org/schedule/2018

Software

Software related to papers is mentioned along with each publication. Here only standalone software is included.

  • DALEX - R package, Descriptive mAchine Learning EXplanations
    • CRAN https://cran.r-project.org/web/packages/DALEX/DALEX.pdf
    • Code: https://github.com/pbiecek/DALEX
  • ELI5 - Python package dedicated to debugging machine learning classifiers and explaining their predictions
    • Code: https://github.com/TeamHG-Memex/eli5
    • https://eli5.readthedocs.io/en/latest/
  • forestmodel - R package visualizing coefficients of different models with the so called forest plot
    • CRAN https://cran.r-project.org/web/packages/forestmodel/index.html
    • Code: https://github.com/NikNakk/forestmodel
  • fscaret - R package with automated Feature Selection from ‘caret’
    • CRAN https://cran.r-project.org/web/packages/fscaret/
    • Tutorial: https://cran.r-project.org/web/packages/fscaret/vignettes/fscaret.pdf
  • iml - R package for Interpretable Machine Learning
    • CRAN https://cran.r-project.org/web/packages/iml/
    • Code: https://github.com/christophM/iml
    • Publication: http://joss.theoj.org/papers/10.21105/joss.00786
  • interpret - Python package package for training interpretable models and explaining blackbox systems by Microsoft
    • Code: https://github.com/microsoft/interpret
  • lime - R package implementing LIME
    • https://github.com/thomasp85/lime
  • lofo-importance - Python package feature importance by Leave One Feature Out Importance method
    • Code: https://github.com/aerdem4/lofo-importance
  • Lucid - a collection of infrastructure and tools for research in neural network interpretability
    • Code: https://github.com/tensorflow/lucid
  • praznik - R package with a collection of feature selection filters performing greedy optimisation of mutual information-based usefulness criteria, see JMLR 13, 27−66 (2012)
    • CRAN https://cran.r-project.org/web/packages/praznik/index.html
    • Code: https://notabug.org/mbq/praznik
  • yellowbrick - Python package offering visual analysis and diagnostic tools to facilitate machine learning model selection
    • Code: https://github.com/DistrictDataLabs/yellowbrick
    • http://www.scikit-yb.org/en/latest/

Other Resources

  • Awesome list of resources by Patrick Hall
    • https://github.com/jphall663/awesome-machine-learning-interpretability
  • Awesome XAI resources by Przemysław Biecek
    • https://github.com/pbiecek/xai_resources
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-11-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 相约机器人 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Interpretable Models
  • Feature Importance
  • Feature Selection
  • Model Explanations
    • Philosophy
      • Model Agnostic Explanations
        • Model Specific Explanations - Neural Networks
        • Extracting Interpretable Models From Complex Ones
        • Model Visualization
        • Selected Review Talks and Tutorials
        • Venues
        • Software
        • Other Resources
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档