场景
我用的数据库是mysql5.6,下面简单的介绍下场景
课程表:
数据100条
学生表:
数据70000条
学生成绩表SC
数据70w条
查询目的:查找语文考100分的考生
查询语句:
select s.* from Student s where s.s_id in (select s_id from SC sc where sc.c_id = 0 and sc.score = 100 )
执行时间:30248.271s
晕,为什么这么慢,先来查看下查询计划:
发现没有用到索引,type全是ALL,那么首先想到的就是建立一个索引,建立索引的字段当然是在where条件的字段。
先给sc表的c_id和score建个索引
CREATE index sc_c_id_index on SC(c_id);
CREATE index sc_score_index on SC(score);
再次执行上述查询语句,时间为: 1.054s
快了3w多倍,大大缩短了查询时间,看来索引能极大程度的提高查询效率,建索引很有必要。很多时候都忘记建索引了,数据量小的的时候压根没感觉,这优化的感觉挺爽。
但是1s的时间还是太长了,还能进行优化吗,仔细看执行计划:
补充:这里有朋友问怎么查看优化后的语句,方法如下:
在命令窗口执行
有type=all
按照我之前的想法,该sql的执行的顺序应该是先执行子查询
耗时:0.001s
得到如下结果:
然后再执行
耗时:0.001s
这样就是相当快了啊,Mysql竟然不是先执行里层的查询,而是将sql优化成了exists子句,并出现了EPENDENT SUBQUERY,mysql是先执行外层查询,再执行里层的查询,这样就要循环70007*8次。
那么改用连接查询呢?
这里为了重新分析连接查询的情况,先暂时删除索引sc_c_id_index,sc_score_index
执行时间是:0.057s
效率有所提高,看看执行计划:
这里有连表的情况出现,我猜想是不是要给sc表的s_id建立个索引
在执行连接查询
时间: 1.076s,竟然时间还变长了,什么原因?查看执行计划:
优化后的查询语句为:
貌似是先做的连接查询,再进行的where条件过滤
回到前面的执行计划:
这里是先做的where条件过滤,再做连表,执行计划还不是固定的,那么我们先看下标准的sql执行顺序:
正常情况下是先join再进行where过滤,但是我们这里的情况,如果先join,将会有70w条数据发送join做操,因此先执行where过滤是明智方案
现在为了排除mysql的查询优化,我自己写一条优化后的sql
即先执行sc表的过滤,再进行表连接,执行时间为:0.054s
和之前没有建s_id索引的时间差不多,查看执行计划:
先提取sc再连表,这样效率就高多了,现在的问题是提取sc的时候出现了扫描表,那么现在可以明确需要建立相关索引
再执行查询:
执行时间为:0.001s,这个时间相当靠谱,快了50倍
执行计划:
我们会看到,先提取sc,再连表,都用到了索引。
那么再来执行下sql
执行时间0.001s
执行计划:
这里是mysql进行了查询语句优化,先执行了where过滤,再执行连接操作,且都用到了索引。
最近又重新导入一些生产数据,经测试发现,前几天优化完的sql执行效率又变低了
调整内容为SC表的数据增长到300W,学生分数更为离散。
先回顾下:
show index from SC
执行sql
执行时间:0.061s,这个时间稍微慢了点
执行计划:
这里用到了intersect并集操作,即两个索引同时检索的结果再求并集,再看字段score和c_id的区分度,单从一个字段看,区分度都不是很大,从SC表检索,c_id=81检索的结果是70001,score=84的结果是39425。
而c_id=81 and score=84 的结果是897,即这两个字段联合起来的区分度是比较高的,因此建立联合索引查询效率将会更高。
从另外一个角度看,该表的数据是300w,以后会更多,就索引存储而言,都是不小的数目,随着数据量的增加,索引就不能全部加载到内存,而是要从磁盘去读取,这样索引的个数越多,读磁盘的开销就越大。
因此根据具体业务情况建立多列的联合索引是必要的,那么我们来试试吧。推荐阅读:37 个 MySQL 数据库小技巧!
执行上述查询语句,消耗时间为:0.007s,这个速度还是可以接收的
执行计划:
该语句的优化暂时告一段落
总结:
索引优化
上面讲到子查询的优化,以及如何建立索引,而且在多个字段索引时,分别对字段建立了单个索引。推荐阅读:MySQL数据库开发的 36 条军规!
后面发现其实建立联合索引效率会更高,尤其是在数据量较大,单个列区分度不高的情况下。
单列索引
查询语句如下:
索引:
分别对sex,type,age字段做了索引,数据量为300w,查询时间:0.415s
执行计划:
发现type=index_merge
这是mysql对多个单列索引的优化,对结果集采用intersect并集操作
多列索引
我们可以在这3个列上建立多列索引,将表copy一份以便做测试
查询语句:
执行时间:0.032s,快了10多倍,且多列索引的区分度越高,提高的速度也越多
执行计划:
最左前缀
多列索引还有最左前缀的特性,执行一下语句:
都会使用到索引,即索引的第一个字段sex要出现在where条件中
索引覆盖
就是查询的列都建立了索引,这样在获取结果集的时候不用再去磁盘获取其它列的数据,直接返回索引数据即可,如:
执行时间:0.003s ,要比取所有字段快的多
排序
时间:0.139s
在排序字段上建立索引会提高排序的效率
create index user_name_index on user_test(user_name)
最后附上一些sql调优的总结,以后有时间再深入研究: