前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >跨平台c开发库tbox:内存库使用详解

跨平台c开发库tbox:内存库使用详解

作者头像
ruki
发布2019-12-04 19:59:48
9580
发布2019-12-04 19:59:48
举报
文章被收录于专栏:TBOOX开源工程TBOOX开源工程

内存整体架构

TBOX的内存管理模型,参考了linux kernel的内存管理机制,并在其基础上做了一些改进和优化。

内存池架构
内存池架构

大块内存池:large_pool

整个内存分配的最底层,都是基于large_pool的大块内存分配池,类似于linux的基于page的分配管理,不过有所不同的是,large_pool并没有像linux那样使用buddy算法进行(2^N)*page进行分配,这样如果需要2.1m的内存,需要分配4m的内存块,这样粒度太大,非常浪费。

因此large_pool内部采用N*page的基于page_size为最小粒度进行分配,因此每次分配顶多浪费不到一页的空间。

而且如果需要的内存不到整页,剩下的内存也会一并返回给上层,如果上层需要(比如small_pool),可以充分利用这多余的部分内存空间,使得内存利用率达到最优化。

而且根据tb_init实际传入的参数需求,large_pool有两种模式:

  1. 直接使用系统内存分配接口将进行大块内存的分配,并用双链维护,这种比较简单,就不多说了。
  2. 在一大块连续内存上进行统一管理,实现内存分配。

具体使用哪种方式,根据应用需求,一般的应用只需要使用方式1就行了,这个时候tb_init传tb_null就行了,如果是嵌入式应用,需要管理有限的一块内存空间,这个时候可以使用方式2, tb_init传入指定内存空间地址和大小。

这里就主要看下方式2的large_pool的内存结构(假设页大小是4KB):

     --------------------------------------------------------------------------
    |                                     data                                 |
     --------------------------------------------------------------------------
                                         |
     --------------------------------------------------------------------------
    | head | 4KB | 16KB | 8KB | 128KB | ... | 32KB |       ...       |  4KB*N  |
     --------------------------------------------------------------------------

由于large_pool主要用于大块分配,而超小块的分配在上层small_pool中已经被分流掉了,所以这个应用中,large_pool不会太过频繁的分配,所以碎片量不会太大,为了进一步减少碎片的产生,在free时候都会对下一个邻近的空闲块进行合并。而malloc在分配当前空闲块空间不够的情况下,也会尝试对下一个邻近空闲块进行合并。

由于每个内存块都是邻近挨着的,也没用双链维护,没有内存块,都有个块头,合并过程仅仅只是改动内存块头部的size字段,这样的合并不会影响效率。

由于没像buddy算法那样,用双链维护空闲内存,虽然节省了链表维护的空间和时间,但是每次分配内存都要顺序遍历所有块,来查找空闲的内存,这样的效率实在太低了,为了解决这个问题,large_pool内部针对不同级别的块,进行了预测,每次free或者malloc的时候,如果都会把当前和邻近的空闲快,缓存到对应级别的预测池里面去,具体的分级如下:

     --------------------------------------
    | >0KB :      4KB       | > 0*page     | 
    |-----------------------|--------------
    | >4KB :      8KB       | > 1*page     | 
    |-----------------------|--------------
    | >8KB :    12-16KB     | > 2*page     | 
    |-----------------------|--------------
    | >16KB :   20-32KB     | > 4*page     | 
    |-----------------------|--------------
    | >32KB :   36-64KB     | > 8*page     | 
    |-----------------------|--------------
    | >64KB :   68-128KB    | > 16*page    | 
    |-----------------------|--------------
    | >128KB :  132-256KB   | > 32*page    | 
    |-----------------------|--------------
    | >256KB :  260-512KB   | > 64*page    | 
    |-----------------------|--------------
    | >512KB :  516-1024KB  | > 128*page   | 
    |-----------------------|--------------
    | >1024KB : 1028-...KB  | > 256*page   | 
     --------------------------------------

由于通常不会分配太大块的内存,因此只要能够预测1m内存,就足够,而对于>1m的内存,这里也单独加了一个预测,来应对偶尔的超大块分配,并且使得整体分配流程更加的统一。

如果当前级别的预测块不存在,则会到下一级别的预测块中查找,如果都找不到,才会去遍历整个内存池。

实际测试下,每个块的预测成功基本都在95%以上,也就说大部分情况下,分配效率都是维持在O(1)级别的。

小块内存池:small_pool

小块内存分配池

在上层每次调用malloc进行内存分配的时候,会去判断需要多大的内存,如果这个内存超过或者等于一页,则会直接从large_pool进行分配,如果小于一页,则会优先通过small_pool进行分配,small_pool针对小块的内存进行了高速缓存,并优化了空间管理和分配效率。

由于程序大部分情况下,都在使用小块内存,因此small_pool对内存的分配做了很大的分流,使得large_pool承受的压力减小,碎片量减少很多,而small_pool内部由于都是由fixed_pool来对固定大小的内存进行管理,是不会存在外部碎片的。而小块内存的粒度本身就很小,所以内部碎片量也相当少。

small_pool中的fixed_pool,就像是linux kernel中的slub,在small_pool中总共有12级别的fixed_pool,每个级别分别管理一种固定大小的内存块,具体级别如下:

     --------------------------------------
    |    fixed pool: 16B    |  1-16B       | 
    |--------------------------------------|
    |    fixed pool: 32B    |  17-32B      |  
    |--------------------------------------|
    |    fixed pool: 64B    |  33-64B      | 
    |--------------------------------------|
    |    fixed pool: 96B*   |  65-96B*     | 
    |--------------------------------------|
    |    fixed pool: 128B   |  97-128B     |  
    |--------------------------------------|
    |    fixed pool: 192B*  |  129-192B*   |  
    |--------------------------------------|
    |    fixed pool: 256B   |  193-256B    |  
    |--------------------------------------|
    |    fixed pool: 384B*  |  257-384B*   |  
    |--------------------------------------|
    |    fixed pool: 512B   |  385-512B    |  
    |--------------------------------------|
    |    fixed pool: 1024B  |  513-1024B   |  
    |--------------------------------------|
    |    fixed pool: 2048B  |  1025-2048B  |  
    |--------------------------------------|
    |    fixed pool: 3072B* |  2049-3072B* |  
     -------------------------------------- 

其中 96B, 192B,384B,3072B并不是按2的整数幂大小,这么做主要是为了更加有效的利用小块内存的空间减少内部碎片。

固定块内存池:fixed_pool

顾名思义,fixed_pool就是用来管理固定大小的内存分配的,相当于linux中slub,而fixed_pool中又由多个slot组成,每个slot负责一块连续的内存空间,管理部分内存块的管理,类似linux中的slab, 每个slot由双链维护,并且参考linux的管理机制,分为三种slot管理方式:

  1. 当前正在分配的slot
  2. 部分空闲slots链表
  3. 完全full的slots链表

具体结构如下:

    current:
         --------------
        |              |
     --------------    |
    |     slot     |<--
    |--------------|
    ||||||||||||||||  
    |--------------| 
    |              | 
    |--------------| 
    |              | 
    |--------------| 
    ||||||||||||||||  
    |--------------| 
    |||||||||||||||| 
    |--------------| 
    |              | 
     --------------  

    partial:

     --------------       --------------               --------------
    |     slot     | <=> |     slot     | <=> ... <=> |     slot     |
    |--------------|     |--------------|             |--------------|
    ||||||||||||||||     |              |             |              |
    |--------------|     |--------------|             |--------------|
    |              |     ||||||||||||||||             |              |
    |--------------|     |--------------|             |--------------|
    |              |     ||||||||||||||||             ||||||||||||||||
    |--------------|     |--------------|             |--------------|
    ||||||||||||||||     ||||||||||||||||             |              |
    |--------------|     |--------------|             |--------------|
    ||||||||||||||||     |              |             |              |
    |--------------|     |--------------|             |--------------|
    |              |     |              |             ||||||||||||||||
    --------------       --------------               --------------

    full:

     --------------       --------------               --------------
    |     slot     | <=> |     slot     | <=> ... <=> |     slot     |
    |--------------|     |--------------|             |--------------|
    ||||||||||||||||     ||||||||||||||||             ||||||||||||||||
    |--------------|     |--------------|             |--------------|
    ||||||||||||||||     ||||||||||||||||             ||||||||||||||||
    |--------------|     |--------------|             |--------------|
    ||||||||||||||||     ||||||||||||||||             ||||||||||||||||
    |--------------|     |--------------|             |--------------|
    ||||||||||||||||     ||||||||||||||||             ||||||||||||||||
    |--------------|     |--------------|             |--------------|
    ||||||||||||||||     ||||||||||||||||             ||||||||||||||||
    |--------------|     |--------------|             |--------------|
    ||||||||||||||||     ||||||||||||||||             ||||||||||||||||
     --------------       --------------               --------------

具体的分配算法

  1. 如果当前slot中还有空闲的块,优先从当前slot进行分配
  2. 如果当前slot中没有空闲块,则把这个slot放到full链表中去
  3. 从部分空闲slot链表中,挑一个空闲的slot进行分配,并把它设为当前分配状态。

具体的释放算法

  1. 释放后如果这个slot完全空闲了,并且不是正在分配的slot,则把整个slot释放掉,这样既可以保证有一个可以分配的slot之外,还极大的降低了内存使用,也避免某些情况下频繁的释放分配slot。
  2. 如果释放的slot属于full链表并且变为了部分空闲,则把这个slot移到部分空闲slot链表中去。

额外要提一下的是

large_pool每次分配一块空间给一个slot的时候,残留下来的部分剩余空间(<1*page), 也能直接返回给slot,让slot充分利用这部分数据,这样可以可以切分出更多的内存块。

例如:

fixed_pool每次增长一个包含256个32B内存块的slot(需要8192B大小+16B内部数据维护大小),其实在用large_pool分配的时候,需要8208B的大小,由于需要按页对齐(4KB),实际分配却占用了8192+4096: 12288B的大小的空间。

但是large_pool支持把所有空间数据一并返回给上层,这样slot其实获取到了一个12288B大小的内存,并且也知道其实际大小为:12288B,因此实际切分了(12288-(32B的slot内部维护数据))/32也就是383个内存块。

多维护了127个内存块,充分把large_pool的内部碎片也利用上了,进一步增加了内存利用率。

fixed_pool中的slot

虽然类比与linux中的slab,但是其数据结构却跟slab不太一样,它并没有像slab那样,对每个空闲小块都用链表维护,而是直接用位段来维护是否空闲的信息,这样更加节省内存,而且通过优化算法,其分配效率和slab几乎一样。

在fixed_pool的slot的头部,专门有一小块独立的数据,用于维护每个小块的空闲信息,每个块只占用一比特位的信息,来判断这个块是否空闲,由于没有内存块都是固定大小的,所以比特位的位置定位,完全可以通过索引计算得到。

而且每次释放和分配,都会去缓存一个双字大小的位信息端,来预测下一次的分配,由于是双字大小,总共有32个比特位,所以每次缓存,最多可以预测邻近32个内存块。因此大部分情况下,预测成功率一直都是>98%的,分配效率都维持在O(1),比起large_pool的预测率还高很多,所以small_pool对large_pool的分流,还在一定程度上,进一步提高了内存分配效率。

而就算很倒霉,没预测成功,slot的顺序遍历来查找空闲快的算法,也相当高效,完全是高度优化的,下面就详细描述下。

slot的顺序遍历分配算法优化

我们这里主要用到了gcc的几个内置函数:

  1. __builtin_clz:计算32位整数前导0的个数
  2. __builtin_ctz:计算32位整数后置0的个数
  3. __builtin_clzll:计算64位整数前导0的个数
  4. __builtin_ctzll:计算64位整数后置0的个数

其实这四个类似,我们这里就拿第一说明好了,为什么要使用__builtin_clz呢?其实就是为了在一个32位端里面,快速查找某个空闲位的索引,这样就能快速定位某个空闲块的位置了。

比如有一个32位的位段信息整数:x,计算对应空闲位0的索引,主需要:__builtin_clz(~x)

简单吧,由于__builtin_clz这些内置函数,gcc用汇编针对不同平台高度优化过的,计算起来相当的快,那如果不是gcc的编译器怎么办呢?

没关系,我们可以自己用c实现个优化版本的,当然完全可以汇编继续优化,这里就先给个c的实现:

    static __tb_inline__ tb_size_t tb_bits_cl0_u32_be_inline(tb_uint32_t x)
    {
        // check
        tb_check_return_val(x, 32);

        // done
        tb_size_t n = 31;
        if (x & 0xffff0000) { n -= 16;  x >>= 16;   }
        if (x & 0xff00)     { n -= 8;   x >>= 8;    }
        if (x & 0xf0)       { n -= 4;   x >>= 4;    }
        if (x & 0xc)        { n -= 2;   x >>= 2;    }
        if (x & 0x2)        { n--;                  }
        return n;
    }

说白了,就是每次对半开,来减少判断次数,比起每次一位一位的枚举遍历,这种已经是相当高效了,更何况还有__builtin_clz呢。

接下来就看下具体的遍历过程:

  1. 按4/8字节对齐位段的起始地址
  2. 每次按4/8字节遍历位段数据,遍历过程利用cpu cache的大小,针对性的做循环展开,来优化性能。
  3. 通过判断 !(x + 1) 来快速过滤 0xffffffff 这些已经满了的位段,进一步提高遍历效率。
  4. 如果某个位段不是0xffffffff,则通过__builtin_clz(~x)计算实际的空闲块索引,并进行实际的分配。
  5. 最后如果这个的32位的位段没有被分配满,可以把它进行缓存,来为下次分配做预测。

字符串内存池:string_pool

讲到这,TBOX的内存池管理模型,基本算是大概讲完了,这里就简单提下string_pool,即:字符串池

string_pool主要针对上层应用而言的,针对某些频繁使用小型字符串,并且重复率很高的模块,就可以通过string_pool进行优化,进一步减少内存使用,string_pool内部通过引用计数+哈希表维护,针对相同的字符串只保存一份。

例如可以用于cookies中字符串维护、http中header部分的字符串维护等等。。

切换全局的内存分配器

tbox的默认内存分配,是完全基于自己的内存池架构,支持内存的快速分配,和对碎片的优化,并且支持各种内存泄露、溢出检测。

如果不想用tbox内置的默认内存分配管理,也可以灵活切换到其他分配模式,因为tbox现在已经完全支持allocator架构, 只要在init阶段传入不同的分配器模型,就能快速切换分配模式,例如:

默认内存分配器

tbox默认的初始化采用了默认的tbox内存管理,他会默认启用内存池维护、碎片优化、内存泄露溢出检测等所有特性。

tb_init(tb_null, tb_null);

上面的初始化等价于:

tb_init(tb_null, tb_default_allocator(tb_null, 0));

默认的分配器,通常情况下都会直接调用系统malloc使用系统原生native内存,只是在此基础上多了层内存管理和内存检测支持,如果想要在一块连续内存上完全托管,可以使用下面的方式:

tb_init(tb_null, tb_default_allocator((tb_byte_t*)malloc(300 * 1024 * 1024), 300 * 1024 * 1024));

静态内存分配器

我们也可以直接采用一整块静态buffer上进行维护,启用内存泄露溢出检测等所有特性,这个跟tb_default_allocator的区别就是, 这个分配器比较轻量,内部的数据结构简单,占用内存少,适合低资源环境,比如在一些嵌入式环境,用这个分配器资源利用率更高些。

!> 但是这个allocator不支持碎片优化,容易产生碎片。

tb_init(tb_null, tb_static_allocator((tb_byte_t*)malloc(300 * 1024 * 1024), 300 * 1024 * 1024));

原生内存分配器

完全使用系统native内存分配,内部不做任何处理和数据维护,所有特性依赖系统环境,所以内存池和内存检测等特性也是不支持的,相当于直接透传给了malloc等系统分配接口。

用户可以根据自己的需要,如果不想使用tbox内置的内存池维护,就可以使用此分配器。

tb_init(tb_null, tb_native_allocator());

虚拟内存分配器

v1.6.4版本之后,tbox新提供了一种分配器类型:虚拟内存分配器,主要用来分配一些超大块的内存。

通常,用户并不需要它,因为tbox默认的内存分配器内部自动会对超大块的内存块,切换到虚拟内存池去分配,不过如果用户想要强制切换到虚拟内存分配,也可以通过下面的方式切换使用:

tb_init(tb_null, tb_virtual_allocator());

自定义内存分配器

如果觉得这些分配器还是不够用,可以自定义自己的内存分配器,让tbox去使用,自定义的方式也很简单,这里拿tb_native_allocator的实现代码为例:

static tb_pointer_t tb_native_allocator_malloc(tb_allocator_ref_t allocator, tb_size_t size __tb_debug_decl__)
{
    // trace
    tb_trace_d("malloc(%lu) at %s(): %lu, %s", size, func_, line_, file_);

    // malloc it
    return malloc(size);
}
static tb_pointer_t tb_native_allocator_ralloc(tb_allocator_ref_t allocator, tb_pointer_t data, tb_size_t size __tb_debug_decl__)
{
    // trace
    tb_trace_d("realloc(%p, %lu) at %s(): %lu, %s", data, size, func_, line_, file_);

    // realloc it
    return realloc(data, size);
}
static tb_bool_t tb_native_allocator_free(tb_allocator_ref_t allocator, tb_pointer_t data __tb_debug_decl__)
{
    // trace    
    tb_trace_d("free(%p) at %s(): %lu, %s", data, func_, line_, file_);

    // free it
    return free(data);
}

然后我们初始化下咱们自己实现的native分配器:

tb_allocator_t myallocator    = {0};
myallocator.type              = TB_ALLOCATOR_NATIVE;
myallocator.malloc            = tb_native_allocator_malloc;
myallocator.ralloc            = tb_native_allocator_ralloc;
myallocator.free              = tb_native_allocator_free;

是不是很简单,需要注意的是,上面的__tb_debug_decl__宏里面声明了一些debug信息,例如_file, _func, _line等内存分配时候记录的信息, 你可以在debug的时候打印出来,做调试,也可以利用这些信息自己去处理一些高级的内存检测操作,但是这些在release下,是不可获取的

所以处理的时候,需要使用__tb_debug__宏,来分别处理。。

将myallocator传入tb_init接口后,之后 tb_malloc/tb_ralloc/tb_free/... 等所有tbox内存分配接口都会切到新的allocator上进行分配。。

tb_init(tb_null, &myallocator);

当然如果想直接从一个特定的allocator上进行分配,还可以直接调用allocator的分配接口来实现:

tb_allocator_malloc(&myallocator, 10);
tb_allocator_ralloc(&myallocator, data, 100);
tb_allocator_free(&myallocator, data);

内存分配接口

数据分配接口

此类接口可以直接分配内存数据,不过返回的是tb_pointer_t类型数据,通过用户需要自己做类型强转才能访问。

!> 其中malloc0这种后缀带0字样的接口,分配的内存会自动做内存清0操作。

tb_free(data)                               
tb_malloc(size)                             
tb_malloc0(size)                            
tb_nalloc(item, size)                       
tb_nalloc0(item, size)                      
tb_ralloc(data, size)                       

字符串分配接口

tbox也提供了字符串类型的便捷分配,操作的数据类型直接就是tb_char_t*,省去了额外的强转过程。

tb_malloc_cstr(size)                        
tb_malloc0_cstr(size)                       
tb_nalloc_cstr(item, size)                  
tb_nalloc0_cstr(item, size)                 
tb_ralloc_cstr(data, size)                  

字节数据分配接口

这个也是数据分配接口,唯一的区别就是,默认做了tb_byte_t*类型的强转处理,访问数据读写访问。

tb_malloc_bytes(size)                       
tb_malloc0_bytes(size)                      
tb_nalloc_bytes(item, size)                 
tb_nalloc0_bytes(item, size)                
tb_ralloc_bytes(data, size)                 

struct结构数据分配接口

如果要分配一些struct数据,那么此类接口自带了struct类型强转处理。

tb_malloc_type(type)                        
tb_malloc0_type(type)                       
tb_nalloc_type(item, type)                  
tb_nalloc0_type(item, type)                 
tb_ralloc_type(data, item, type)      

使用方式如下:

typedef struct __xxx_t
{
    tb_int_t dummy;

}xxx_t;

xxx_t* data = tb_malloc0_type(xxx_t);
if (data)
{
    data->dummy = 0;
    tb_free(data);
}

可以看到,我们省去了类型转换过程,所以这是个提供一定便利性的辅助接口。

地址对齐数据分配接口

如果我们有时候要求分配出来的内存数据地址,必须是按照指定大小对齐过的,就可以使用此类接口:

tb_align_free(data)                         
tb_align_malloc(size, align)                
tb_align_malloc0(size, align)               
tb_align_nalloc(item, size, align)          
tb_align_nalloc0(item, size, align)         
tb_align_ralloc(data, size, align) 

例如:

tb_pointer_t data = tb_align_malloc(1234, 16);

实际分配出来的data数据地址是16字节对齐的。

如果是按8字节对齐的内存数据分配,也可以通过下面的接口来分配,此类接口对64bits系统上做了优化,并没做什么特殊处理:

#if TB_CPU_BIT64
#   define tb_align8_free(data)                     tb_free((tb_pointer_t)data)
#   define tb_align8_malloc(size)                   tb_malloc(size)
#   define tb_align8_malloc0(size)                  tb_malloc0(size)
#   define tb_align8_nalloc(item, size)             tb_nalloc(item, size)
#   define tb_align8_nalloc0(item, size)            tb_nalloc0(item, size)
#   define tb_align8_ralloc(data, size)             tb_ralloc((tb_pointer_t)data, size)
#else
#   define tb_align8_free(data)                     tb_align_free((tb_pointer_t)data)
#   define tb_align8_malloc(size)                   tb_align_malloc(size, 8)
#   define tb_align8_malloc0(size)                  tb_align_malloc0(size, 8)
#   define tb_align8_nalloc(item, size)             tb_align_nalloc(item, size, 8)
#   define tb_align8_nalloc0(item, size)            tb_align_nalloc0(item, size, 8)
#   define tb_align8_ralloc(data, size)             tb_align_ralloc((tb_pointer_t)data, size, 8)
#endif

内存检测

TBOX的内存分配在调试模式下,可以检测支持内存泄露和越界,而且还能精确定位到出问题的那块内存具体分配位置,和函数调用堆栈。

要使用tbox的内存检测功能,只需要切换到debug模式编译:

$ xmake f -m debug
$ xmake

内存泄露检测

!> 泄露检测,必须在程序完整退出,确保调用了tb_exit()接口后才能触发检测。

内存泄露的检测必须在程序退出的前一刻,调用tb_exit()的时候,才会执行,如果有泄露,会有详细输出到终端上。

    tb_void_t tb_demo_leak()
    {
        tb_pointer_t data = tb_malloc0(10);
    }

输出:

    [tbox]: [error]: leak: 0x7f9d5b058908 at tb_static_fixed_pool_dump(): 735, memory/impl/static_fixed_pool.c
    [tbox]: [error]: data: from: tb_demo_leak(): 43, memory/check.c
    [tbox]: [error]:     [0x000001050e742a]: 0   demo.b                              0x00000001050e742a tb_fixed_pool_malloc0_ + 186
    [tbox]: [error]:     [0x000001050f972b]: 1   demo.b                              0x00000001050f972b tb_small_pool_malloc0_ + 507
    [tbox]: [error]:     [0x000001050f593c]: 2   demo.b                              0x00000001050f593c tb_pool_malloc0_ + 540
    [tbox]: [error]:     [0x00000105063cd7]: 3   demo.b                              0x0000000105063cd7 tb_demo_leak + 55
    [tbox]: [error]:     [0x00000105063e44]: 4   demo.b                              0x0000000105063e44 tb_demo_memory_check_main + 20
    [tbox]: [error]:     [0x0000010505b08e]: 5   demo.b                              0x000000010505b08e main + 878
    [tbox]: [error]:     [0x007fff8c95a5fd]: 6   libdyld.dylib                       0x00007fff8c95a5fd start + 1
    [tbox]: [error]:     [0x00000000000002]: 7   ???                                 0x0000000000000002 0x0 + 2
    [tbox]: [error]: data: 0x7f9d5b058908, size: 10, patch: cc

内存越界检测

越界溢出的检测,是实时完成的,而且对libc也做了插桩,所以对常用strcpy,memset等的使用,都会去检测

    tb_void_t tb_demo_overflow()
    {
        tb_pointer_t data = tb_malloc0(10);
        if (data)
        {
            tb_memset(data, 0, 11);
            tb_free(data);
        }
    }

输出:

    [tbox]: [memset]: [overflow]: [0x0 x 11] => [0x7f950b044508, 10]
    [tbox]: [memset]: [overflow]: [0x0000010991a1c7]: 0   demo.b                              0x000000010991a1c7 tb_memset + 151
    [tbox]: [memset]: [overflow]: [0x000001098a2d01]: 1   demo.b                              0x00000001098a2d01 tb_demo_overflow + 97
    [tbox]: [memset]: [overflow]: [0x000001098a3044]: 2   demo.b                              0x00000001098a3044 tb_demo_memory_check_main + 20
    [tbox]: [memset]: [overflow]: [0x0000010989a28e]: 3   demo.b                              0x000000010989a28e main + 878
    [tbox]: [memset]: [overflow]: [0x007fff8c95a5fd]: 4   libdyld.dylib                       0x00007fff8c95a5fd start + 1
    [tbox]: [memset]: [overflow]: [0x00000000000002]: 5   ???                                 0x0000000000000002 0x0 + 2
    [tbox]:     [malloc]: [from]: data: from: tb_demo_overflow(): 12, memory/check.c
    [tbox]:     [malloc]: [from]:     [0x0000010992662a]: 0   demo.b                              0x000000010992662a tb_fixed_pool_malloc0_ + 186
    [tbox]:     [malloc]: [from]:     [0x0000010993892b]: 1   demo.b                              0x000000010993892b tb_small_pool_malloc0_ + 507
    [tbox]:     [malloc]: [from]:     [0x00000109934b3c]: 2   demo.b                              0x0000000109934b3c tb_pool_malloc0_ + 540
    [tbox]:     [malloc]: [from]:     [0x000001098a2cd7]: 3   demo.b                              0x00000001098a2cd7 tb_demo_overflow + 55
    [tbox]:     [malloc]: [from]:     [0x000001098a3044]: 4   demo.b                              0x00000001098a3044 tb_demo_memory_check_main + 20
    [tbox]:     [malloc]: [from]:     [0x0000010989a28e]: 5   demo.b                              0x000000010989a28e main + 878
    [tbox]:     [malloc]: [from]:     [0x007fff8c95a5fd]: 6   libdyld.dylib                       0x00007fff8c95a5fd start + 1
    [tbox]:     [malloc]: [from]:     [0x00000000000002]: 7   ???                                 0x0000000000000002 0x0 + 2
    [tbox]:     [malloc]: [from]: data: 0x7f950b044508, size: 10, patch: cc
    [tbox]:     [malloc]: [from]: data: first 10-bytes:
    [tbox]: ===================================================================================================================================================
    [tbox]: 00000000   00 00 00 00  00 00 00 00  00 00                                                                         ..........
    [tbox]: [error]: abort at tb_memset(): 255, libc/string/memset.c

内存重叠覆盖检测

如果两块内存的copy发生了重叠,有可能会覆盖掉部分数据,导致bug,因此TBOX对此也做了些检测。

    tb_void_t tb_demo_overlap()
    {
        tb_pointer_t data = tb_malloc(10);
        if (data)
        {
            tb_memcpy(data, (tb_byte_t const*)data + 1, 5);
            tb_free(data);
        }
    }

输出

    [tbox]: [memcpy]: [overlap]: [0x7fe9b5042509, 5] => [0x7fe9b5042508, 5]
    [tbox]: [memcpy]: [overlap]: [0x000001094403b8]: 0   demo.b                              0x00000001094403b8 tb_memcpy + 632
    [tbox]: [memcpy]: [overlap]: [0x000001093c99f9]: 1   demo.b                              0x00000001093c99f9 tb_demo_overlap + 105
    [tbox]: [memcpy]: [overlap]: [0x000001093c9a44]: 2   demo.b                              0x00000001093c9a44 tb_demo_memory_check_main + 20
    [tbox]: [memcpy]: [overlap]: [0x000001093c0c8e]: 3   demo.b                              0x00000001093c0c8e main + 878
    [tbox]: [memcpy]: [overlap]: [0x007fff8c95a5fd]: 4   libdyld.dylib                       0x00007fff8c95a5fd start + 1
    [tbox]: [memcpy]: [overlap]: [0x00000000000002]: 5   ???                                 0x0000000000000002 0x0 + 2
    [tbox]:     [malloc]: [from]: data: from: tb_demo_overlap(): 58, memory/check.c
    [tbox]:     [malloc]: [from]:     [0x0000010945eadb]: 0   demo.b                              0x000000010945eadb tb_small_pool_malloc_ + 507
    [tbox]:     [malloc]: [from]:     [0x0000010945b23c]: 1   demo.b                              0x000000010945b23c tb_pool_malloc_ + 540
    [tbox]:     [malloc]: [from]:     [0x000001093c99c7]: 2   demo.b                              0x00000001093c99c7 tb_demo_overlap + 55
    [tbox]:     [malloc]: [from]:     [0x000001093c9a44]: 3   demo.b                              0x00000001093c9a44 tb_demo_memory_check_main + 20
    [tbox]:     [malloc]: [from]:     [0x000001093c0c8e]: 4   demo.b                              0x00000001093c0c8e main + 878
    [tbox]:     [malloc]: [from]:     [0x007fff8c95a5fd]: 5   libdyld.dylib                       0x00007fff8c95a5fd start + 1
    [tbox]:     [malloc]: [from]:     [0x00000000000002]: 6   ???                                 0x0000000000000002 0x0 + 2
    [tbox]:     [malloc]: [from]: data: 0x7fe9b5042508, size: 10, patch: cc
    [tbox]:     [malloc]: [from]: data: first 10-bytes:
    [tbox]: ===================================================================================================================================================
    [tbox]: 00000000   CC CC CC CC  CC CC CC CC  CC CC                                                                         ..........
    [tbox]: [error]: abort at tb_memcpy(): 125, libc/string/memcpy.c

内存双重释放检测

    tb_void_t tb_demo_free2()
    {
        tb_pointer_t data = tb_malloc0(10);
        if (data)
        {
            tb_free(data);
            tb_free(data);
        }
    }

输出

    [tbox]: [assert]: expr[((impl->used_info)[(index) >> 3] & (0x1 << ((index) & 7)))]: double free data: 0x7fd93386c708 at tb_static_fixed_pool_free(): 612, memory/impl/static_fixed_pool.c
    [tbox]:     [0x0000010c9f553c]: 0   demo.b                              0x000000010c9f553c tb_static_fixed_pool_free + 972
    [tbox]:     [0x0000010c9ee7a9]: 1   demo.b                              0x000000010c9ee7a9 tb_fixed_pool_free_ + 713
    [tbox]:     [0x0000010ca01ff5]: 2   demo.b                              0x000000010ca01ff5 tb_small_pool_free_ + 885
    [tbox]:     [0x0000010c9fdb4f]: 3   demo.b                              0x000000010c9fdb4f tb_pool_free_ + 751
    [tbox]:     [0x0000010c96ac8e]: 4   demo.b                              0x000000010c96ac8e tb_demo_free2 + 158
    [tbox]:     [0x0000010c96ae44]: 5   demo.b                              0x000000010c96ae44 tb_demo_memory_check_main + 20
    [tbox]:     [0x0000010c96208e]: 6   demo.b                              0x000000010c96208e main + 878
    [tbox]:     [0x007fff8c95a5fd]: 7   libdyld.dylib                       0x00007fff8c95a5fd start + 1
    [tbox]:     [0x00000000000002]: 8   ???                                 0x0000000000000002 0x0 + 2
    [tbox]: [error]: free(0x7fd93386c708) failed! at tb_demo_free2(): 37, memory/check.c at tb_static_fixed_pool_free(): 649, memory/impl/static_fixed_pool.c
    [tbox]: [error]: data: from: tb_demo_free2(): 33, memory/check.c
    [tbox]: [error]:     [0x0000010c9ee42a]: 0   demo.b                              0x000000010c9ee42a tb_fixed_pool_malloc0_ + 186
    [tbox]: [error]:     [0x0000010ca0072b]: 1   demo.b                              0x000000010ca0072b tb_small_pool_malloc0_ + 507
    [tbox]: [error]:     [0x0000010c9fc93c]: 2   demo.b                              0x000000010c9fc93c tb_pool_malloc0_ + 540
    [tbox]: [error]:     [0x0000010c96ac27]: 3   demo.b                              0x000000010c96ac27 tb_demo_free2 + 55
    [tbox]: [error]:     [0x0000010c96ae44]: 4   demo.b                              0x000000010c96ae44 tb_demo_memory_check_main + 20
    [tbox]: [error]:     [0x0000010c96208e]: 5   demo.b                              0x000000010c96208e main + 878
    [tbox]: [error]:     [0x007fff8c95a5fd]: 6   libdyld.dylib                       0x00007fff8c95a5fd start + 1
    [tbox]: [error]:     [0x00000000000002]: 7   ???                                 0x0000000000000002 0x0 + 2
    [tbox]: [error]: data: 0x7fd93386c708, size: 10, patch: cc
    [tbox]: [error]: data: first 10-bytes:
    [tbox]: ===================================================================================================================================================
    [tbox]: 00000000   00 00 00 00  00 00 00 00  00 00                                                                         ..........
    [tbox]: [error]: abort at tb_static_fixed_pool_free(): 655, memory/impl/static_fixed_pool.c
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-11-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 TBOOX开源工程 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 内存整体架构
    • 大块内存池:large_pool
      • 小块内存池:small_pool
        • 固定块内存池:fixed_pool
          • fixed_pool中的slot
            • slot的顺序遍历分配算法优化
          • 字符串内存池:string_pool
          • 切换全局的内存分配器
            • 默认内存分配器
              • 静态内存分配器
                • 原生内存分配器
                  • 虚拟内存分配器
                    • 自定义内存分配器
                    • 内存分配接口
                      • 数据分配接口
                        • 字符串分配接口
                          • 字节数据分配接口
                            • struct结构数据分配接口
                              • 地址对齐数据分配接口
                              • 内存检测
                                • 内存泄露检测
                                  • 内存越界检测
                                    • 内存重叠覆盖检测
                                      • 内存双重释放检测
                                      领券
                                      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档