前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >从Netty EventLoop实现上可以学到什么

从Netty EventLoop实现上可以学到什么

作者头像
luoxn28
发布2019-12-12 16:49:51
9220
发布2019-12-12 16:49:51
举报
文章被收录于专栏:TopCoderTopCoder

编者注:本文主要讨论Netty NioEventLoop原理及实践,关于Netty NioEventLoop,首先要知道NioEventLoop是什么,为什么它会是Netty核心Reactor处理器,实现原理是什么,进而再讨论Netty对其的实现及使用上我们可以学到哪些。

EventLoop是一个Reactor模型的事件处理器,一个EventLoop对应一个线程,其内部会维护一个selector和taskQueue,负责处理客户端请求和内部任务,内部任务如ServerSocketChannel注册、ServerSocket绑定和延时任务处理等操作。

EventLoop是由事件驱动的,比如IO事件和任务等,IO事件即selectionKey中ready的事件,如accept、connect、read、write等,由processSelectedKeys方法触发。处理完请求时间之后,会处理内部添加到taskQueue中的任务,如register0、bind0等任务,由runAllTasks方法触发。注意NioEventLoop在Linux中默认底层是基于epoll机制。

上图是EventLoop的核心流程图,如果从Netty整体视角看EventLoop的事件流转,下图来的更直观:

注意:bossGroup和WorkerGroup中的NioEventLoop流程是一致的,只不过前者处理Accept事件之后将连接注册到后者,由后者处理该连接上后续的读写事件。

大致了解了NioEventLoop之后,不知道有没有小伙伴有这样的疑问,为什么Netty要这样实现呢,这种实现方案对于我们后续开发如何借鉴呢?关于这些疑问,本文最后讨论哈 :)

EventLoop实现原理

EventLoop是一个Reactor模型的事件处理器,一个EventLoop对应一个线程,其内部会维护一个selector和taskQueue,负责处理IO事件和内部任务。IO事件和内部任务执行时间百分比通过ioRatio来调节,ioRatio表示执行IO时间所占百分比。任务包括普通任务和已经到时的延迟任务,延迟任务存放到一个优先级队列PriorityQueue中,执行任务前从PriorityQueue读取所有到时的task,然后添加到taskQueue中,最后统一执行task。

事件处理机制

EventLoop是由事件驱动的,比如IO事件即selectionKey中ready的事件,如accept、connect、read、write等,处理的核心逻辑主要是在NioEventLoop.run方法中,流程如下:

代码语言:javascript
复制
protected void run() {
    for (;;) {
        /* 如果hasTasks,则调用selector.selectNow(),非阻塞方式获取channel事件,没有channel事件时可能返回为0。这里用非阻塞方式是为了尽快获取连接事件,然后处理连接事件和内部任务。*/
      switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) {
        case SelectStrategy.CONTINUE:
          continue;
        case SelectStrategy.SELECT:
          select(wakenUp.getAndSet(false));
          if (wakenUp.get()) {
            selector.wakeup();
          }
        default:
      }

      cancelledKeys = 0;
      needsToSelectAgain = false;
      /* ioRatio调节连接事件和内部任务执行事件百分比
       * ioRatio越大,连接事件处理占用百分比越大 */
      final int ioRatio = this.ioRatio;
      if (ioRatio == 100) {
        try {
          processSelectedKeys();
        } finally {
          runAllTasks();
        }
      } else {
        final long ioStartTime = System.nanoTime();
        try {
          processSelectedKeys();
        } finally {
          final long ioTime = System.nanoTime() - ioStartTime;
          runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
        }
      }
    }
}

从代码上,在执行select()前有一个hasTasks()的操作,这个hasTasks()方法判断当前taskQueue是否有元素。如果taskQueue中有元素,执行 selectNow() 方法,最终执行selector.selectNow(),该方法会立即返回,保证了EventLoop在有任务执行时不会因为IO事件迟迟不来造成延后处理,这里优先处理IO事件,然后再处理任务。

如果当前taskQueue没有任务时,就会执行select(wakenUp.getAndSet(false))方法,代码如下:

代码语言:javascript
复制
/* 这个方法解决了Nio中臭名昭著的bug:selector的select方法导致空轮询 cpu100% */
private void select(boolean oldWakenUp) throws IOException {
    Selector selector = this.selector;
    try {
        int selectCnt = 0;
        long currentTimeNanos = System.nanoTime();

        /* delayNanos(currentTimeNanos):计算延迟任务队列中第一个任务的到期执行时间(即最晚还能延迟多长时间执行),默认返回1s。每个SingleThreadEventExecutor都持有一个延迟执行任务的优先队列PriorityQueue,启动线程时,往队列中加入一个任务。*/
        long selectDeadLineNanos = currentTimeNanos + delayNanos(currentTimeNanos);
        for (;;) {
            /* 如果延迟任务队列中第一个任务的最晚还能延迟执行的时间小于500000纳秒,且selectCnt == 0(selectCnt 用来记录selector.select方法的执行次数和标识是否执行过selector.selectNow()),则执行selector.selectNow()方法并立即返回。*/
            long timeoutMillis = (selectDeadLineNanos - currentTimeNanos + 500000L) / 1000000L;
            if (timeoutMillis <= 0) {
                if (selectCnt == 0) {
                    selector.selectNow();
                    selectCnt = 1;
                }
                break;
            }

            if (hasTasks() && wakenUp.compareAndSet(false, true)) {
                selector.selectNow();
                selectCnt = 1;
                break;
            }

            // 超时阻塞select
            int selectedKeys = selector.select(timeoutMillis);
            selectCnt ++;
            System.out.println(selectCnt);

            // 有事件到来 | 被唤醒 | 有内部任务 | 有定时任务时,会返回
            if (selectedKeys != 0 || oldWakenUp || wakenUp.get() || hasTasks() || hasScheduledTasks()) {
                break;
            }

            long time = System.nanoTime();
            if (time - TimeUnit.MILLISECONDS.toNanos(timeoutMillis) >= currentTimeNanos) {
                // 阻塞超时后没有事件到来,重置selectCnt
                selectCnt = 1;
            } else if (SELECTOR_AUTO_REBUILD_THRESHOLD > 0 &&
                    selectCnt >= SELECTOR_AUTO_REBUILD_THRESHOLD) {
                // Selector重建
                rebuildSelector();
                selector = this.selector;
                // Select again to populate selectedKeys.
                selector.selectNow();
                selectCnt = 1;
                break;
            }
            currentTimeNanos = time;
        }
    } catch (CancelledKeyException e) {
        // Harmless exception - log anyway
    }
}

当java NIO bug触发时,进行Selector重建,rebuildSelector过程如下:

  1. 通过方法openSelector创建一个新的selector。
  2. 将old selector的selectionKey执行cancel。
  3. 将old selector的channel重新注册到新的selector中。

Netty的连接处理就是IO事件的处理,IO事件包括读事件、ACCEPT事件、写事件和OP_CONNECT事件:

  • ACCEPT事件:连接建立好之后将该连接的channel注册到workGroup中某个NIOEventLoop的selector中;
  • READ事件:从channel中读取数据,存放到byteBuf中,触发后续的ChannelHandler来处理数据;
  • WRITE事件:正常情况下一般是不会注册写事件的,如果Socket发送缓冲区中没有空闲内存时,在写入会导致阻塞,此时可以注册写事件,当有空闲内存(或者可用字节数大于等于其低水位标记)时,再响应写事件,并触发对应回调。
  • CONNECT事件:该事件是client触发的,由主动建立连接这一侧触发的。

任务处理机制

任务处理也就是处理内部任务,这里也包括延时任务,延时任务到时后会移动到taskQueue然后被执行。任务处理是在IO事件处理之后进行的,IO事件和内部任务执行时间百分比可以通过ioRatio来调节,ioRatio表示执行IO时间所占百分比。

代码语言:javascript
复制
/* timeoutNanos:任务执行花费最长耗时/
protected boolean runAllTasks(long timeoutNanos) {
    // 把scheduledTaskQueue中已经超过延迟执行时间的任务移到taskQueue中等待被执行。
    fetchFromScheduledTaskQueue();

    // 非阻塞方式pollTask
    Runnable task = pollTask();
    if (task == null) {
        afterRunningAllTasks();
        return false;
    }

    final long deadline = ScheduledFutureTask.nanoTime() + timeoutNanos;
    long runTasks = 0;
    long lastExecutionTime;
    for (;;) {
        // 执行task
        safeExecute(task);
        runTasks ++;
        // 依次从taskQueue任务task执行,每执行64个任务,进行耗时检查。
        // 如果已执行时间超过预先设定的执行时间,则停止执行非IO任务,避免非IO任务太多,影响IO任务的执行。
        if ((runTasks & 0x3F) == 0) {
            lastExecutionTime = ScheduledFutureTask.nanoTime();
            if (lastExecutionTime >= deadline) {
                break;
            }
        }

        task = pollTask();
        if (task == null) {
            lastExecutionTime = ScheduledFutureTask.nanoTime();
            break;
        }
    }
    afterRunningAllTasks();
    this.lastExecutionTime = lastExecutionTime;
    return true;
}

注意,任务的处理过程中有个执行一定量任务后的执行时间耗时检查动作,这里是为了避免任务的处理时间过长,影响Netty网络IO的处理效率,毕竟Netty是要处理大量网络IO的。

对于NioEventLoop实现的思考

EventLoop是一个Reactor模型的事件处理器,一个EventLoop对应一个线程,其内部会维护一个selector和taskQueue,负责处理网络IO请求和内部任务,这里的selector和taskQueue是线程内部的。

Netty的BossGroup和WorkerGroup可能包含多个EventLoop,BossGroup接收到请求之后轮询交给WorkerGroup中的其中一个线程(对应一个NioEventLoop)来处理,也就是连接之间的处理是线程独立的,这也就是NioEventLoop流程的无锁化设计。

从EventLoop“无锁化”设计和常见的锁机制对比来看,要实现线程并发安全,有两种实现策略:

  • 数据隔离:数据隔离就是数据产生后就提交给不同的线程来处理,线程内部一般有一个数据容器来保存待处理的数据,这里的提交动作需要保证是安全的,比如Netty的BossGroup将建立好的连接注册到WorkerGroup时,是由内核来保证线程安全的(比如Linux就是通过epoll_ctl方法,该方法是线程安全的);
  • 数据分配:数据产生后统一放在数据容器中,由数据消费线程自己来获取数据进行处理,这里的获取动作需要保证是安全的,一般通过锁机制来保护,比如Java线程池中线程从阻塞队列中获取任务进行执行,就是由阻塞队列保证线程安全。

对于数据隔离和数据分配来说,二者都有优缺点及适用场景。对于数据隔离来说,一般“锁”交互少成本较低,并且其隔离性较好,线程内部如果有新数据产生还继续由该线程来处理,但是可能造成数据负载不均衡;对于数据分配来说,“锁”交互较多,但是由于数据处理线程都是从同一数据容器消费数据,所以不会出现数据处理负载不均衡问题。

如果想实现类似EventLoop中单个线程对应一个处理队列的方案,可以使用只配置一个线程的Java线程池,达到类似的实现效果。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-12-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 TopCoder 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • EventLoop实现原理
    • 事件处理机制
      • 任务处理机制
      • 对于NioEventLoop实现的思考
      相关产品与服务
      容器服务
      腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档