了解Spark的朋友会发现Flink的架构和Spark是非常类似的,在整个软件架构体系中,同样遵循着分层的架构设计理念,在降低系统耦合度的同时,也为上层用户构建Flink应用提供了丰富且友好的接口。
Flink分为架构分为三层,由上往下依次是API&Libraries层、Runtime核心层以及物理部署层
API&Libraries层
作为分布式数据处理框架,Flink同时提供了支撑计算和批计算的接口,同时在此基础上抽象出不同的应用类型的组件库,如基于流处理的CEP(复杂事件处理库)、SQL&Table库和基于批处理的FlinkML(机器学习库)等、Gelly(图处理库)等。API层包括构建流计算应用的DataStream API和批计算应用的DataSet API,两者都提供给用户丰富的数据处理高级API,例如Map、FlatMap操作等,同时也提供比较低级的Process Function API,用户可以直接操作状态和时间等底层数据。
Runtime核心层
该层主要负责对上层不同接口提供基础服务,也是Flink分布式计算框架的核心实现层,支持分布式Stream作业的执行、JobGraph到ExecutionGraph的映射转换、任务调度等。将DataSteam和DataSet转成统一的可执行的Task Operator,达到在流式引擎下同时处理批量计算和流式计算的目的。
物理部署层
该层主要涉及Flink的部署模式,目前Flink支持多种部署模式:本地、集群(Standalone、YARN)、云(GCE/EC2)、Kubenetes。Flink能够通过该层能够支持不同平台的部署,用户可以根据需要选择使用对应的部署模式。
Flink基本架构图
Flink系统主要由两个组件组成,分别为JobManager和TaskManager,Flink架构也遵循Master-Slave架构设计原则,JobManager为Master节点,TaskManager为Worker(Slave)节点。所有组件之间的通信都是借助于Akka Framework,包括任务的状态以及Checkpoint触发等信息。
1.Client客户端
客户端负责将任务提交到集群,与JobManager构建Akka连接,然后将任务提交到JobManager,通过和JobManager之间进行交互获取任务执行状态。客户端提交任务可以采用CLI方式或者通过使用Flink WebUI提交,也可以在应用程序中指定JobManager的RPC网络端口构建ExecutionEnvironment提交Flink应用。
2.JobManager
JobManager负责整个Flink集群任务的调度以及资源的管理,从客户端中获取提交的应用,然后根据集群中TaskManager上TaskSlot的使用情况,为提交的应用分配相应的TaskSlots资源并命令TaskManager启动从客户端中获取的应用。JobManager相当于整个集群的Master节点,且整个集群中有且仅有一个活跃的JobManager,负责整个集群的任务管理和资源管理。JobManager和TaskManager之间通过Actor System进行通信,获取任务执行的情况并通过Actor System将应用的任务执行情况发送给客户端。同时在任务执行过程中,Flink JobManager会触发Checkpoints操作,每个TaskManager节点收到Checkpoint触发指令后,完成Checkpoint操作,所有的Checkpoint协调过程都是在Flink JobManager中完成。当任务完成后,Flink会将任务执行的信息反馈给客户端,并且释放掉TaskManager中的资源以供下一次提交任务使用。
3.TaskManager
TaskManager相当于整个集群的Slave节点,负责具体的任务执行和对应任务在每个节点上的资源申请与管理。客户端通过将编写好的Flink应用编译打包,提交到JobManager,然后JobManager会根据已经注册在JobManager中TaskManager的资源情况,将任务分配给有资源的TaskManager节点,然后启动并运行任务。TaskManager从JobManager接收需要部署的任务,然后使用Slot资源启动Task,建立数据接入的网络连接,接收数据并开始数据处理。同时TaskManager之间的数据交互都是通过数据流的方式进行的。
可以看出,Flink的任务运行其实是采用多线程的方式,这和MapReduce多JVM进程的方式有很大的区别Flink能够极大提高CPU使用效率,在多个任务和Task之间通过TaskSlot方式共享系统资源,每个TaskManager中管理多个TaskSlot资源池进行对资源进行有效管理。