前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Cochran-Mantel-Haenszel检验在关联分析中的应用

Cochran-Mantel-Haenszel检验在关联分析中的应用

作者头像
生信修炼手册
发布2019-12-19 11:40:18
2.8K0
发布2019-12-19 11:40:18
举报
文章被收录于专栏:生信修炼手册

Cochran-Mantel-Haenszel, 简称CMH检验,是分析两个二分类变量之间关联性的一种检验方法,在2 x 2 表格数据的基础上,引入了第三个分类变量,称之为混杂变量。混杂变量的引入使得该检验可以用于分析分层样本,作为生物统计学领域的一种常用技术,该检验常用于疾病对照研究。

下面来看一个最基本的例子,研究不同性别和候选人投票结果之间的关联,得到如下所示的2 x 2的表格

这里有两个二分类变量,第一个是投票者的性别,第二个是候选人A和B。考虑到所有的投票者本身存在分层现象,来自3个不同的州,针对不同的州重新统计,得到如下的结果

上述例子中,投票者出现了分层现象,来自3个不同的州。如果不考虑这个因素,直接统计性别和候选人的频数分布,采用卡方或者费舍尔精确检验来进行分析,即使得到了阳性的结果,也无法确定是不同性别之间真实存在投票的差异还是由于来自不同的州导致了这样的差异。

由于投票者的分层现象,直接采用卡方或者费舍尔精确检验进行分析是不太合适的。在上述模型中,投票者的分层就是一个典型的混杂变量,对于这样的数据可以采用CMH检验进行分析。

CMH检验针对每个分层统计2X2的表格,计算每一层的odd ratio值,然后在进行加权,计算公共的odd ratio, 每一层用i表示,统计的2X2表格数据如下

common odd raio的计算公式如下

从公式可以看出,利用每层的样本总数进行了加权,用于CMH分析的数据要求样本量比较大,以保证每层的频数表格中不会出现0的情况。该检验的统计量公式如下

服从自由度为1的卡方分布,上述数据在R中进行CMH检验的代码如下

pvalue值大于0.05. 说明性别和候选者之间没有关联。如果直接对总体结果进行卡方或者费舍尔精确检验的话,得到的结论相反,计算过程如下

从这个数据可以看出,对于分层样本,有必要进行CMH检验。需要说明的是,CMH检验假设所有分层的odd raio值相同,可以通过Breslow-Day test来进行检验,代码如下

pvalue值大于0.05,说明不满足odd ratio齐性。当然对于分层数据,除了CMH检验外,逻辑回归也是一个很好的解决方法,而且更加通用,可以将混杂变量当做回归分析中的协变量来进行处理。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-09-29,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 生信修炼手册 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档