前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >使用NetMHCpan进行肿瘤新抗原预测分析

使用NetMHCpan进行肿瘤新抗原预测分析

作者头像
生信修炼手册
发布2019-12-19 15:42:09
7.2K0
发布2019-12-19 15:42:09
举报
文章被收录于专栏:生信修炼手册

欢迎关注”生信修炼手册”!

NetMHCpan软件用于预测肽段与MHC I型分子的亲和性,最新版本为v4.0, 基于人工神经网络算法,以180000多个定量结合数据和MS衍生的MHC洗脱配体的组合为训练集构建模型。结合亲和力数据来自人,小鼠,猪等多个物种的MHC分子,MS洗脱的配体数据来自55个人和小鼠的HLA等位基因。该软件的网址如下

http://www.cbs.dtu.dk/services/NetMHCpan/

直接上传fasta格式的蛋白序列就可以了, 示意如下

第一步上传涵盖了体细胞突变位点的氨基酸序列,上传的氨基酸序列是突变之后的序列,不是野生型的蛋白质序列。

第二步选择切割肽段的方式,抗原通过抗原表位与MHC分子结合,MHC I型分子可以结合的抗原表位长度为8到11个氨基酸,对应这里的8-11mer,先将蛋白质序列切分成短的肽段之后在进行MHC分子亲和性的预测。

第三步选择HLA allel, 确定之后点击提交按钮即可。输出结果示意如下

列数很多,其中的Peptide就是从原始的输入序列中提取出的长度为8-11个氨基酸的肽段,Pos对应肽段的在原始序列上的起始位置,第一个位置从0开始计数;Core对应与MHC结合的肽段序列,和blast类似,允许插入和缺失,%Rank代表该肽段是一个天然存在的肽段的可能性,数值越小越好,最后一列的BindLevel代表亲和力的强弱水平,SB表示strong binding, WB表示weak bingding。每一列的详细解释参见以下链接

http://www.cbs.dtu.dk/services/NetMHCpan/output.php

官方按照Rank值来筛选结果,默认情况下rank小于0.5的定义为强亲和性,rank值在0.5到2之间的定义为弱亲和性。通过该软件可以从突变之后的氨基酸序列中预测到与MHC I型分子亲和力较强的肽段,作为候选的肿瘤新抗原。

为了进一步简化分析,相关的数据分析pipeline被开发出来,只需要提供肿瘤患者的体细胞突变数据和HLA分型结果即可,软件自动提取突变氨基酸序列,并进行NetMHCpan分析,类似的软件有很多,NeoPredPipe软件就是其中之一,该软件的网址如下

https://github.com/MathOnco/NeoPredPipe

基本用法如下

代码语言:javascript
复制
python NeoPredPipe.py \
-I somatic.vcf \
-H hlatypes.txt \
-o ./ \
-n TestRun \
-c 1 2 -E 8 9 10

需要提供两个输入文件,-I指定体细胞突变的vcf文件,-H指定HLA分型结果文件。更多细节请参考该软件的官方文档。

通过上述的数据分析,可以快速定位出候选的新抗原,然而其中的假阳性率还是非常高的,后续还需要结合体外实验来进一步筛选和过滤。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-07-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 生信修炼手册 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档