专栏首页相约机器人机器学习的十大图像分类数据集

机器学习的十大图像分类数据集

为了帮助构建对象识别模型,场景识别模型等,编制了最佳图像分类数据集的列表。这些数据集的范围和大小各不相同,可以适应各种用例。此外数据集已分为以下几类:医学成像,农业和场景识别等。

医学图像分类数据集

1. 递归蜂窝图像分类 –此数据来自递归2019挑战。竞赛的目标是利用生物显微镜数据开发可识别复制品的模型。关于比赛的全部信息可以在这里找到。

https://www.kaggle.com/c/recursion-cellular-image-classification

2. TensorFlow patch_camelyon医学图像 –该医学图像分类数据集来自TensorFlow网站。它包含超过327,000个彩色图像,每个96 x 96像素。图像是包含转移组织的组织病理学淋巴结扫描。

https://www.tensorflow.org/datasets/catalog/patch_camelyon

农业和场景数据集

3. CoastSat图像分类数据集 –用于开放源代码海岸线测绘工具,该数据集包含从卫星获取的航空图像。数据集还包括与标签有关的元数据。

https://figshare.com/articles/CoastSat_image_classification_training_data/8868665/1

4. 用于天气识别的图像 –用于多类天气识别,此数据集是1125张图像的集合,分为四个类别。图像类别为日出,晴天,雨天和多云。

https://data.mendeley.com/datasets/4drtyfjtfy/1

5. 室内场景图像 –来自麻省理工学院的该数据集包含15,000多个室内位置图像。该数据集最初是为解决室内场景识别问题而构建的。所有图像均为JPEG格式,已分为67类。每个类别的图像数量有所不同。但是每个类别至少有100张图像。

https://www.kaggle.com/itsahmad/indoor-scenes-cvpr-2019

6. Intel图像分类 –由Intel为图像分类竞赛而创建,此扩展图像数据集包含约25,000张图像。此外图像分为以下几类:建筑物,森林,冰川,山脉,海洋和街道。数据集已分为用于训练,测试和预测的文件夹。训练文件夹包含大约14,000张图像,而测试文件夹包含大约3,000张图像。最后预测文件夹包含大约7,000张图像。

https://www.kaggle.com/puneet6060/intel-image-classification/version/2

7. TensorFlow Sun397图像分类数据集 –来自Tensorflow的另一个数据集,该数据集包含场景理解(SUN)基准中使用的108,000多幅图像。此外图像已分为397类。每个类别中的确切图像数量各不相同。但是,每个场景和对象类别中至少有100张图像。

https://www.tensorflow.org/datasets/catalog/sun397s

其他图像分类数据集

8. 建筑遗产元素 –创建此数据集是为了训练可基于文化遗产对建筑图像进行分类的模型。它包含超过10,000个图像,分为10类。类别为:坛,后殿,钟楼,圆柱,圆顶(内部),圆顶(外部),飞檐,石像鬼,彩色玻璃和穹顶。

https://datahub.io/dataset/architectural-heritage-elements-image-dataset

9. 图像分类:人和食物 –该数据集采用CSV格式,由吃食物的人的图像组成。人类注释者按性别和年龄对图像进行分类。CSV文件包含587行数据,URL链接到每个图像。

https://data.world/crowdflower/image-classification-people-an

10. 用于分类的混凝土裂缝图像 –来自Mendeley的该数据集包含40,000个混凝土图像。每个图像均为227 x 227像素,其中一半图像包含有裂缝的混凝土,另一半图像没有裂缝。

https://data.mendeley.com/datasets/5y9wdsg2zt/2

本文分享自微信公众号 - 相约机器人(xiangyuejiqiren),作者:代码医生

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-12-19

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 高糊图片可以做什么?Goodfellow等人用它生成一组合理图像

    作者:David Berthelot、Peyman Milanfar、Ian Goodfellow

    代码医生工作室
  • 识别自动驾驶的深度

    有许多传感器可用于在车辆行驶时捕获信息。捕获的各种测量结果包括速度,位置,深度,热等。这些测量结果被输入到反馈系统中,该系统训练并利用运动模型来遵守车辆。本文重...

    代码医生工作室
  • 用网络摄像头制作艺术品

    几千年来,人类文化的一个非常重要的特征就是艺术。没有其他物种能够创造出与Leo da Vinci或Van Gogh的画作有些相似的东西。甚至很多人都难以创造出这...

    代码医生工作室
  • 去噪、去水印、超分辨率,这款不用学习的神经网络无所不能

    事情是这样的:研究人员们让一个深度卷积网络去学习复制被破坏的图像(例如加入噪点的图像),随后竟发现这个网络可以自行先学会如何重建图像。该研究的论文《Deep I...

    机器之心
  • 【虫二】的人工智能

    艺术创作一直是人类精神活动的最高级形式,自古以来,人们认为只有人类的智慧才能真正领悟艺术作品的深远意境和奥妙神韵,玄而又玄的艺术风格更是只可意会,不可言传。近些...

    新智元
  • 深度学习在图像处理中的应用趋势及常见技巧

    链接 | https://zhuanlan.zhihu.com/p/147885624

    小白学视觉
  • 基于SURF算法相似图像相对位置的寻找

    例如以下两个相似证件的模板,若以其中一幅图像为模板,并给出相应的位置,可以给出其他相似图像进行定位相对应的位置,如下图所示,其中除了标题和样式一样,内容确是不同...

    智能算法
  • 图像处理入门基础

    1、数字图像处理是指将图像信号转换成数字信号并利用计算机对其进行处理的过程,图像看成二维、三维或者更高维的信号。

    长风破浪
  • 木星切片剪影:JunoCam 图像处理

    WolframChina
  • 干货 | 携程图像智能化建设之路

    携程技术

扫码关注云+社区

领取腾讯云代金券