前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >4000余字为你讲透Codis内部工作原理 顶

4000余字为你讲透Codis内部工作原理 顶

作者头像
个推君
发布2019-12-24 10:07:16
2.8K0
发布2019-12-24 10:07:16
举报
文章被收录于专栏:原创

一、引言 Codis是一个分布式 Redis 解决方案,可以管理数量巨大的Redis节点。个推作为专业的第三方推送服务商,多年来专注于为开发者提供高效稳定的消息推送服务。每天通过个推平台下发的消息数量可达百亿级别。基于个推推送业务对数据量、并发量以及速度的要求非常高,实践发现,单个Redis节点性能容易出现瓶颈,综合考虑各方面因素后,我们选择了Codis来更好地管理和使用Redis。

二、选择Codis的原因 随着公司业务规模的快速增长,我们对数据量的存储需求也越来越大,实践表明,在单个Redis的节点实例下,高并发、海量的存储数据很容易使内存出现暴涨。

此外,每一个Redis的节点,其内存也是受限的,主要有以下两个原因:

一是内存过大,在进行数据同步时,全量同步的方式会导致时间过长,从而增加同步失败的风险; 二是越来越多的redis节点将导致后期巨大的维护成本。

因此,我们对Twemproxy、Codis和Redis Cluster 三种主流redis节点管理的解决方案进行了深入调研。

推特开源的Twemproxy最大的缺点是无法平滑的扩缩容。而Redis Cluster要求客户端必须支持cluster协议,使用Redis Cluster需要升级客户端,这对很多存量业务是很大的成本。此外,Redis Cluster的p2p方式增加了通信成本,且难以获知集群的当前状态,这无疑增加了运维的工作难度。

而豌豆荚开源的Codis不仅可以解决Twemproxy扩缩容的问题,而且兼容了Twemproxy,且在Redis Cluster(Redis官方集群方案)漏洞频出的时候率先成熟稳定下来,所以最后我们使用了Codis这套集群解决方案来管理数量巨大的redis节点。

目前个推在推送业务上综合使用Redis和Codis,小业务线使用Redis,数据量大、节点个数众多的业务线使用Codis。

我们要清晰地理解Codis内部是如何工作的,这样才能更好地保证Codis集群的稳定运行。下面我们将从Codis源码的角度来分析Codis的Dashboard和Proxy是如何工作的。

三、Codis介绍 Codis是一个代理中间件,用GO语言开发而成。Codis 在系统的位置如下图所示 :

Codis是一个分布式Redis解决方案,对于上层应用来说,连接Codis Proxy和连接原生的Redis Server没有明显的区别,有部分命令不支持;

Codis底层会处理请求的转发、不停机的数据迁移等工作,对于前面的客户端来说,Codis是透明的,可以简单地认为客户端(client)连接的是一个内存无限大的Redis服务。

Codis分为四个部分,分别是: Codis Proxy (codis-proxy) Codis Dashboard Codis Redis (codis-server) ZooKeeper/Etcd

Codis架构

四、Dashboard的内部工作原理

Dashboard介绍 Dashboard是Codis的集群管理工具,所有对集群的操作包括proxy和server的添加、删除、数据迁移等都必须通过dashboard来完成。Dashboard的启动过程是对一些必要的数据结构以及对集群的操作的初始化。

Dashboard启动过程 Dashboard启动过程,主要分为New()和Start()两步。

New()阶段 ⭕ 启动时,首先读取配置文件,填充config信息。coordinator的值如果是"zookeeper"或者是"etcd",则创建一个zk或者etcd的客户端。根据config创建一个Topom{}对象。Topom{}十分重要,该对象里面存储了集群中某一时刻所有的节点信息(slot,group,server等),而New()方法会给Topom{}对象赋值。

⭕ 随后启动18080端口,监听、处理对应的api请求。

⭕ 最后启动一个后台线程,每隔一分钟清理pool中无效client。

下图是dashboard在New()时内存中对应的数据结构。

Start()阶段

⭕ Start()阶段,将内存中model.Topom{}写入zk,路径是/codis3/codis-demo/topom。

⭕ 设置topom.online=true。

⭕ 随后通过Topom.store从zk中重新获取最新的slotMapping、group、proxy等数据填充到topom.cache中(topom.cache,这个缓存结构,如果为空就通过store从zk中取出slotMapping、proxy、group等信息并填充cache。不是只有第一次启动的时候cache会为空,如果集群中的元素(server、slot等等)发生变化,都会调用dirtyCache,将cache中的信息置为nil,这样下一次就会通过Topom.store从zk中重新获取最新的数据填充。)

⭕ 最后启动4个goroutine for循环来处理相应的动作 。

创建group过程 创建分组的过程很简单。 ⭕ 首先,我们通过Topom.store从zk中重新拉取最新的slotMapping、group、proxy等数据填充到topom.cache中。

⭕ 然后根据内存中的最新数据来做校验:校验group的id是否已存在以及该id是否在1~9999这个范围内。

⭕ 接着在内存中创建group{}对象,调用zkClient创建路径/codis3/codis-demo/group/group-0001。

初始,这个group下面是空的。 { "id": 1, "servers": [], "promoting": {}, "out_of_sync": false }

添加codis server ⭕接下来,向group中添加codis server。Dashboard首先会去连接后端codis server,判断节点是否正常。

⭕ 接着在codis server上执行slotsinfo命令,如果命令执行失败则会导致cordis server添加进程的终结。

⭕ 之后,通过Topom.store从zk中重新拉取最新的slotMapping、group、proxy等数据填充到topom.cache中,根据内存中的最新数据来做校验,判断当前group是否在做主从切换,如果是,则退出;然后检查group server在zk中是否已经存在。

⭕ 最后,创建一个groupServer{}对象,写入zk。 当codis server添加成功后,就像我们上面说的,Topom{}在Start时,有4个goroutine for循环,其中RefreshRedisStats()就可以将codis server的连接放进topom.stats.redisp.pool中

tips ⭕ Topom{}在Start时,有4个goroutine for循环,其中RefreshRedisStats执行过程中会将codis server的连接放进topom.stats.redisp.pool中;

⭕ RefreshRedisStats()每秒执行一次,里面的逻辑是从topom.cache中获取所有的codis server,然后根据codis server的addr 去topom.stats.redisp.Pool.pool 里面获取client。如果能取到,则执行info命令;如果不能取到,则新建一个client,放进pool中,然后再使用client执行info命令,并将info命令执行的结果放进topom.stats.servers中。

Codis Server主从同步 当一个group添加完成2个节点后,要点击主从同步按钮,将第二个节点变成第一个的slave节点。

⭕ 首先,第一步还是刷新topom.cache。我们通过Topom.store从zk中重新获取最新的slotMapping、group、proxy等数据并把它们填充到topom.cache中。

⭕然后根据最新的数据进行判断:group.Promoting.State != models.ActionNothing,说明当前group的Promoting不为空,即 group里面的两个cordis server在做主从切换,主从同步失败;

group.Servers[index].Action.State == models.ActionPending,说明当前作为salve角色的节点,其状态为pending,主从同步失败;

⭕ 判断通过后,获取所有codis server状态为ActionPending的最大的action.index的值+1,赋值给当前的codis server,然后设置当前作为slave角色的节点的状态为:g.Servers[index].Action.State = models.ActionPending。将这些信息写进zk。

⭕ Topom{}在Start时,有4个goroutine for循环,其中一个用于具体处理主从同步问题。

⭕ 页面上点击主从同步按钮后,内存中对应的数据结构会发生相应的变化:

⭕ 写进zk中的group信息

tips

Topom{}在Start时,有4个goroutine for循环,其中一个便用于具体来处理主从同步。具体怎么做呢?

首先,通过Topom.store从zk中重新获取最新的slotMapping、group、proxy等数据填充到topom.cache中,待得到最新的cache数据后,获取需要做主从同步的group server,修改group.Servers[index].Action.State == models.ActionSyncing,写入zk中。

其次,dashboard连接到作为salve角色的节点上,开启一个redis事务,执行主从同步命令:

c.Send(“MULTI”) —> 开启事务 c.Send(“config”, “set”, “masterauth”, c.Auth) c.Send(“slaveof”, host, port)

c.Send(“config”, “rewrite") c.Send(“client”, “kill”, “type”, “normal") c.Do(“exec”) —> 事物执行

⭕ 主从同步命令执行完成后,修改group.Servers[index].Action.State == “synced”并将其写入zk中。至此,整个主从同步过程已经全部完成。

codis server在做主从同步的过程中,从开始到完成一共会经历5种状态:

""(ActionNothing) --> 新添加的codis,没有主从关系的时候,状态为空 pending(ActionPending) --> 页面点击主从同步之后写入zk中 syncing(ActionSyncing) --> 后台goroutine for循环处理主从同步时,写入zk的中间状态 synced --> goroutine for循环处理主从同步成功后,写入zk中的状态 synced_failed --> goroutine for循环处理主从同步失败后,写入zk中的状态

slot分配 上文给Codis集群添加了codis server,做了主从同步,接下来我们把1024个slot分配给每个codis server。Codis给使用者提供了多种方式,它可以将指定序号的slot移到某个指定group,也可以将某个group中的多个slot移动到另一个group。不过,最方便的方式是自动rebalance。

通过Topom.store我们首先从zk中重新获取最新的slotMapping、group、proxy等数据填充到topom.cache中,再根据cache中最新的slotMapping和group信息,生成slots分配计划 plans = {0:1, 1:1, … , 342:3, …, 512:2, …, 853:2, …, 1023:3},其中key 为 slot id, value 为 group id。接着,我们按照slots分配计划,更新slotMapping信息:Action.State = ActionPending和Action.TargetId = slot分配到的目标group id,并将更新的信息写回zk中。

Topom{}在Start时,有4个goroutine for循环,其中一个用于处理slot分配。

SlotMapping:

tips ● Topom{}在Start时,有4个goroutine for循环,其中ProcessSlotAction执行过程中就将codis server的连接放进topom.action.redisp.pool中了。

● ProcessSlotAction()每秒执行一次,待里面的一系列处理逻辑执行之后,它会从topom{}.action.redisp.Pool.pool中获取client,随后在redis上执行SLOTSMGRTTAGSLOT命令。如果client能取到,则dashboard会在redis上执行迁移命令;如果不能取到,则新建一个client,放进pool中,然后再使用client执行迁移命令。

SlotMapping中action对应的7种状态:

我们知道Codis是由ZooKeeper来管理的,当Codis的Codis Dashbord改变槽位信息时,其他的Codis Proxy节点会监听到ZooKeeper的槽位变化,并及时同步槽位信息。

总结一下,启动dashboard过程中,需要连接zk、创建Topom这个struct,并通过18080这个端口与集群进行交互,然后将该端口收到的信息进行转发。此外,还需要启动四个goroutine、刷新集群中的redis和proxy的状态,以及处理slot和同步操作。

五、Proxy的内部工作原理

proxy启动过程 proxy启动过程,主要分为New()、Online()、reinitProxy()和接收客户端请求()等4个环节。

New()阶段 ⭕ 首先,在内存中新建一个Proxy{}结构体对象,并进行各种赋值。 ⭕ 其次,启动11080端口和19000端口。 ⭕ 然后启动3个goroutine后台线程,处理对应的操作: ●Proxy启动一个goroutine后台线程,并对11080端口的请求进行处理; ●Proxy启动一个goroutine后台线程,并对19000端口的请求进行处理; ●Proxy启动一个goroutine后台线程,通过ping codis server对后端bc予以维护 。

Online()阶段 ⭕ 首先对model.Proxy{}的id进行赋值,Id = ctx.maxProxyId() + 1。若添加第一个proxy时, ctx.maxProxyId() = 0,则第一个proxy的id 为 0 + 1。

⭕ 其次,在zk中创建proxy目录。

⭕之后,对proxy内存数据进行刷新reinitProxy(ctx, p, c)。

⭕ 第四,设置如下代码: online = true proxy.online = true router.online = true jodis.online = true

⭕ 第五,zk中创建jodis目录。

reinitProxy() ⭕Dashboard从zk[m1] 中重新获取最新的slotMapping、group、proxy等数据填充到topom.cache中。根据cache中的slotMapping和group数据,Proxy可以得到model.Slot{},其里面包含了每个slot对应后端的ip与port。建立每个codis server的连接,然后将连接放进router中。

⭕ Redis请求是由sharedBackendConn中取出的一个BackendConn进行处理的。Proxy.Router中存储了集群中所有sharedBackendConnPool和slot的对应关系,用于将redis的请求转发给相应的slot进行处理,而Router里面的sharedBackendConnPool和slot则是通过reinitProxy()来保持最新的值。

总结一下proxy启动过程中的流程。首先读取配置文件,获取Config对象。其次,根据Config新建Proxy,并填充Proxy的各个属性。这里面比较重要的是填充models.Proxy(详细信息可以在zk中查看),以及与zk连接、注册相关路径。

随后,启动goroutine监听11080端口的codis集群发过来的请求并进行转发,以及监听发到19000端口的redis请求并进行相关处理。紧接着,刷新zk中数据到内存中,根据models.SlotMapping和group在Proxy.router中创建1024个models.Slot。此过程中Router为每个Slot都分配了对应的backendConn,用于将redis请求转发给相应的slot进行处理。

六、Codis内部原理补充说明 Codis中key的分配算法是先把key进行CRC32,得到一个32位的数字,然后再hash%1024后得到一个余数。这个值就是这个key对应着的槽,这槽后面对应着的就是redis的实例。

slot共有七种状态:nothing(用空字符串表示)、pending、preparing、prepared、migrating、finished。

如何保证slots在迁移过程中不影响客户端的业务? ⭕ client端把命令发送到proxy, proxy会算出key对应哪个slot,比如30,然后去proxy的router里拿到Slot{},内含backend.bc和migrate.bc。如果migrate.bc有值,说明slot目前在做迁移操作,系统会取出migrate.bc.conn(后端codis-server连接),并在codis server上强制将这个key迁移到目标group,随后取出backend.bc.conn,访问对应的后端codis server,并进行相应操作。

七、Codis的不足与个推使用上的改进

Codis的不足 ⭕ 欠缺安全考虑,codis fe页面没有登录验证功能; ⭕ 缺乏自带的多租户方案; ⭕ 缺乏集群缩容方案。

个推使用上的改进 ⭕ 采用squid代理的方式来简单限制fe页面的访问,后期基于fe进行二次开发来控制登录; ⭕ 小业务通过在key前缀增加业务标识,复用相同集群;大业务使用独立集群,独立机器; ⭕ 采用手动迁移数据、腾空节点、下线节点的方法来缩容。

八、全文总结 Codis作为个推消息推送一项重要的基础服务,性能的好坏至关重要。个推将Redis节点迁移到Codis后,有效地解决了扩充容量和运维管理的难题。未来,个推还将继续关注Codis,与大家共同探讨如何在生产环境中更好地对其进行使用。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
云数据库 Redis®
腾讯云数据库 Redis®(TencentDB for Redis®)是腾讯云打造的兼容 Redis 协议的缓存和存储服务。丰富的数据结构能帮助您完成不同类型的业务场景开发。支持主从热备,提供自动容灾切换、数据备份、故障迁移、实例监控、在线扩容、数据回档等全套的数据库服务。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档