前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Linux的五种IO模型?

Linux的五种IO模型?

作者头像
斯武丶风晴
发布2019-12-25 14:23:50
9040
发布2019-12-25 14:23:50
举报
文章被收录于专栏:龙首琴剑庐龙首琴剑庐

IO的同步、异步、阻塞、非阻塞

同步、异步

  • 同步synchronous): A 调用 B, B 立刻处理 A 的请求(即使 C 紧接着调用 B),并把最终结果 返回给 A。
  • 异步asynchronous):A 调用 B, B 立刻反馈 A, 仅是状态,并非最终结果。B 处理完 A 的请求, 完成后把 最终结果 返回给 A。

关注:<font color='red'>被调用者 B 是否有消息通知(回调函数)机制 把 最终结果 返回给 A。</font>

阻塞、非阻塞

  • 阻塞blocking):A 调用 B, 在 B 返回结果前,A 会被挂起 (忙等),只有 B 把最终结果 返回给 A, A 才继续处理。
  • 非阻塞non-blocking):A 调用 B, 在 B 返回结果前,A 不会被挂起 (做其他事情)。

关注:<font color='red'>调用者 A 在等被调用者 B 返回结果前的状态。</font>

IO相关概念

用户空间与内核空间

为保证内核的安全,操心系统将内存空间划分为两部分,一部分为内核内存空间,一部分为用户内存空间

  • 操作系统的核心是内核(kernel),独立于普通的用户进程(application),可以访问受保护的内核内存空间,有访问底层硬件设备(hardware)的所有权限。
  • 用户进程(application)只能使用用户内存空间,不能直接操作内核内存空间,没有访问底层硬件设备(hardware)的权限,需要向内核(kernel)发起系统调用(syscall)函数调用,交由内核(kernel)处理。

进程切换

为了控制进程的执行,内核(kernel)必须有能力(通过时钟中断)挂起正在CPU上运行的进程(application),并恢复以前挂起的某个进程的执行。这种行为被称为进程切换

进程的阻塞

正在运行的用户进程(application),可能因为期待的某些事件未发生,如请求系统资源失败、等待某种操作的完成、新数据尚未到达或无新工作做等,则由系统自动执行阻塞原语(Block),使自己由运行状态变为阻塞 (blocking) 状态。

可见,进程的阻塞是进程自身的一种主动行为,也因此只有处于运行态的进程(获得CPU),才可能将其转为阻塞状态。 当进程进入阻塞状态,是不占用CPU资源的。

典型一次IO的两阶段

当一个read操作发生时,涉及到两个系统对象,一个是调用这个IO的process (or thread),另一个就是系统内核(kernel),它会经历两个阶段:

  • 等待数据准备 (Waiting for the data to be ready), 即 用户进程(application) 等待 内核(kernel) 操作底层硬件设备(hardware)读取并准备好数据。
  • 将数据从内核(kernel)拷贝到用户进程(application)中 (Copying the data from the kernel to the process)

Linux的五种IO模型

在Linux(UNIX)操作系统中,共有五种IO模型,分别是:

  • 阻塞IO模型(Blocking I/O)
  • 非阻塞IO模型(non-blocking I/O)
  • IO复用模型(I/O multiplexing)
  • 信号驱动IO模型(signal-driven I/O)
  • 异步IO模型(Asynchronous I/O)

阻塞IO模型(Blocking I/O)

Linux操作系统中,这就是一种最简单的IO模型,即阻塞IO。 阻塞 I/O 是最简单的 I/O 模型,一般表现为进程或线程等待某个条件,如果条件不满足,则一直等下去。条件满足,则进行下一步操作。 用户进程(application)通过系统调用 recvfrom 接收数据,但由于内核(kernel)还未准备好数据报,用户进程(application)就会阻塞(blocking)住,直到内核(kernel)准备好数据,并完成数据复制工作,用户进程(application)才能结束阻塞状态。

  • 用户进程(application) 在两阶段都是阻塞 (blocking) 状态。
  • 内核(kernel)在两阶段都是同步(synchronous)状态。

非阻塞IO模型(non-blocking I/O)

用户进程(application)通过 recvfrom 调用不停的去和内核(kernel)交互,直到内核(kernel)准备好数据。如果没有准备好,内核会返回error,用户进程在得到error后,过一段时间再发送recvfrom请求。在两次发送请求的时间段,进程(application)可以先做别的事情。

  • 用户进程(application) 在第一阶段是非阻塞 (non-blocking) 状态, 在第二阶段是阻塞 (blocking) 状态。
  • 内核(kernel)在两阶段都是同步(synchronous)状态。

IO复用模型(I/O multiplexing)

多了一个select函数,多个用户进程(application)的IO可以注册到同一个select上,当用户进程(application)调用该select,select会监听所有注册好的IO,如果所有被监听的IO需要的数据都没有准备好时,select调用进程会阻塞。当任意一个IO所需的数据准备好之后,select调用就会返回,然后进程在通过recvfrom来进行数据拷贝。

  • 用户进程(application) 在两阶段都是阻塞 (blocking) 状态。
  • 内核(kernel)在两阶段都是同步(synchronous)状态。
  • 与 阻塞IO模型(Blocking I/O) 的区别在于 它将两阶段 切为两个步骤函数,提高了处理的吞吐率。

信号驱动IO模型(signal-driven I/O)

用户进程(application)预先向内核注册一个信号处理函数,然后用户进程返回,并且不阻塞,当内核(kernel)数据准备就绪时会发送一个信号给进程,用户进程便在信号处理函数中开始把数据拷贝的用户空间中。

  • 用户进程(application) 在第一阶段是非阻塞 (non-blocking) 状态, 在第二阶段是阻塞 (blocking) 状态。
  • 内核(kernel)在第一阶段都是异步(asynchronous) 状态, 在第二阶段是同步(synchronous)状态。
  • 与 非阻塞IO模型(non-blocking I/O) 的区别在于 它提供了消息通知机制,不需要用户进程(application) 定时去检查。

异步IO模型(Asynchronous I/O)

用户进程(application)发起aio_read操作之后,给内核(kernel)传递描述符、缓冲区指针、缓冲区大小等,告诉内核当整个操作完成时,如何通知进程,然后就立刻去做其他事情了。当内核(kernel)收到aio_read后,会立刻返回,然后内核开始等待数据准备,数据准备好以后,直接把数据拷贝到用户空间,然后再通知进程(application)本次IO已经完成。

  • 用户进程(application) 在整体阶段是非阻塞 (non-blocking) 状态。
  • 内核(kernel)在整体阶段是异步(asynchronous)状态。

横向对比

钓鱼例子:

  • 阻塞IO模型(Blocking I/O):

我们坐在鱼竿面前,这个过程中我们什么也不做,双手一直把着鱼竿,就静静的等着鱼儿咬钩(第一阶段我是阻塞的,鱼竿是同步的)。一旦手上感受到鱼的力道,就把鱼钓起来放入鱼篓(第二阶段我是阻塞的,鱼竿是同步的)中。然后再钓下一条鱼。

  • 非阻塞IO模型(non-blocking I/O):

我们钓鱼的时候,在等待鱼儿咬钩的过程中,我们可以做点别的事情,比如玩一把王者荣耀、看一集《延禧攻略》等等。但是,我们要时不时的去看一下鱼竿,一旦发现有鱼儿上钩了(第一阶段我是非阻塞的,鱼竿是同步的),就把鱼钓起来放入鱼篓(第二阶段我是阻塞的,鱼竿是同步的)中。然后再钓下一条鱼。

  • IO复用模型(I/O multiplexing)

我们钓鱼的时候,为了保证可以最短的时间钓到最多的鱼,我们同一时间摆放多个鱼竿,同时钓鱼。然后哪个鱼竿有鱼儿咬钩了(第一阶段我是阻塞的,鱼竿是同步的),我们就把哪个鱼竿上面的鱼钓起来放入鱼篓(第二阶段我是阻塞的,鱼竿是同步的)中。然后再钓下一条鱼。

  • 信号驱动IO模型(signal-driven I/O)

我们钓鱼的时候,为了避免自己一遍一遍的去查看鱼竿,我们可以给鱼竿安装一个报警器。当有鱼儿咬钩的时候立刻报警(第一阶段我是非阻塞的,鱼竿是异步的)。然后我们再收到报警后,去把鱼钓起来放入鱼篓(第二阶段我是阻塞的,鱼竿是同步的)中。然后再钓下一条鱼。

  • 异步IO模型(Asynchronous I/O)

我们钓鱼的时候,采用一种高科技钓鱼竿,即全自动钓鱼竿。可以自动感应鱼上钩,自动收竿,更厉害的可以自动把鱼放进鱼篓里。然后,通知我们鱼已经钓到了,他就继续去钓下一条鱼去了。(两阶段我是非阻塞的,鱼竿是异步的)

最后我们总结:

by 斯武丶风晴 https://my.oschina.net/langxSpirit

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • IO的同步、异步、阻塞、非阻塞
    • 同步、异步
      • 阻塞、非阻塞
      • IO相关概念
        • 用户空间与内核空间
          • 进程切换
            • 进程的阻塞
              • 典型一次IO的两阶段
              • Linux的五种IO模型
                • 阻塞IO模型(Blocking I/O)
                  • 非阻塞IO模型(non-blocking I/O)
                    • IO复用模型(I/O multiplexing)
                      • 信号驱动IO模型(signal-driven I/O)
                        • 异步IO模型(Asynchronous I/O)
                          • 横向对比
                          领券
                          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档