专栏首页我爱计算机视觉CV Code | 本周新出计算机视觉开源代码汇总

CV Code | 本周新出计算机视觉开源代码汇总

点击我爱计算机视觉标星,更快获取CVML新技术


大家好,又到了周末盘点一周CV开源代码的时间!

很高兴这一模块已经被大家所认可。

过去的一周:

MobileNetV3 的开源犹如一阵旋风,突然出现了几十个项目。

C3F 的开源使得人群计数领域终于有了自己的框架。(开发者就在我们52CV行人群里哦)

百度开源YOLOv3,再一次为 PaddlePaddle 刷了存在感。

还有语义分割、目标跟踪、表情识别、姿态估计、超分辨率等的开源代码,他们来自最近新出的论文,对于相关方向的同学肯定很有借鉴意义。

一起来看看吧~

谷歌最新MobileNetV3开源实现!

https://github.com/xiaolai-sqlai/mobilenetv3

C3F:首个开源人群计数算法框架

https://github.com/gjy3035/C-3-Framework

快到没朋友的YOLOv3有了PaddlePaddle 预训练模型,精度更高了!

https://github.com/PaddlePaddle/models/blob/v1.4/PaddleCV/yolov3/README_cn.md

语义分割 | 高效的梯形风格的DenseNets网络LDN,用于大图像的语义分割

Efficient Ladder-style DenseNets for Semantic Segmentation of Large Images

Ivan Krešo, Josip Krapac, Siniša Šegvić

https://arxiv.org/abs/1905.05661v1

(代码将于论文被接收后开源,还未公布地址)

目标跟踪 | 研究从相关滤波跟踪算法中去除常见的Cosine Window机制,与传统算法和深度学习算法相比都取得了不错的精度。

Remove Cosine Window from Correlation Filter-based Visual Trackers: When and How

Feng Li, Xiaohe Wu, Wangmeng Zuo, David Zhang, Lei Zhang

https://arxiv.org/abs/1905.06648v1

https://github.com/lifeng9472/Removing_cosine_window_from_CF_trackers

显著性 | 利用眼动数据进行显著性建模

Leverage eye-movement data for saliency modeling: Invariance Analysis and a Robust New Model

Zhaohui Che, Ali Borji, Guangtao Zhai, Xiongkuo Min, Guodong Guo, Patrick Le Callet

https://arxiv.org/abs/1905.06803v1

https://github.com/CZHQuality/Sal-CFS-GAN

CVPR 2019

3D人脸建模 | 使用单图像进行3D人脸形状回归

Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Soubhik Sanyal, Timo Bolkart, Haiwen Feng, Michael J. Black

https://arxiv.org/abs/1905.06817v1

http://ringnet.is.tuebingen.mpg.de/

ICML 2019

对抗攻击 | 通过有效的组合优化进行简单的黑盒对抗性攻击

Parsimonious Black-Box Adversarial Attacks via Efficient Combinatorial Optimization

Seungyong Moon, Gaon An, Hyun Oh Song

https://arxiv.org/abs/1905.06635v1

https://github.com/snu-mllab/parsimonious-blackbox-attack

ICML 2019

数据增广 | 增广策略学习

Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules

Daniel Ho, Eric Liang, Ion Stoica, Pieter Abbeel, Xi Chen

https://arxiv.org/abs/1905.05393v1

https://github.com/arcelien/pba

点云数据处理识别 | 使用局部空间注意力模型的点集特征学习

LSANet: Feature Learning on Point Sets by Local Spatial Attention

Lin-Zhuo Chen, Xuan-Yi Li, Deng-Ping Fan, Ming-Ming Cheng, Kai Wang, Shao-Ping Lu

https://arxiv.org/abs/1905.05442v1

https://github.com/LinZhuoChen/LSANet

姿态估计| 多视图3D人体姿态估计,构建可学习的三角测量

Learnable Triangulation of Human Pose

Karim Iskakov, Egor Burkov, Victor Lempitsky, Yury Malkov

https://arxiv.org/abs/1905.05754v1

https://saic-violet.github.io/learnable-triangulation

ICIP 2019

人脸解析 | 通过域适应方法进行弱监督的漫画人脸解析

Weakly-supervised Caricature Face Parsing through Domain Adaptation

Wenqing Chu, Wei-Chih Hung, Yi-Hsuan Tsai, Deng Cai, Ming-Hsuan Yang

https://arxiv.org/abs/1905.05091v1

https://github.com/ZJULearning/CariFaceParsing

手势识别 | 设计手势音素。生成更大规模的不同手势,并用CNN识别

Talking with Your Hands: Scaling Hand Gestures and Recognition with CNNs

Okan Köpüklü, Yao Rong, Gerhard Rigoll

https://arxiv.org/abs/1905.04225

https://www.mmk.ei.tum.de/shgd/

域适应 | 提出一种叫Virtual Mixup Training 的正则化方法,用于非监督学习的域适应

Virtual Mixup Training for Unsupervised Domain Adaptation

Xudong Mao, Yun Ma, Zhenguo Yang, Yangbin Chen, Qing Li

https://arxiv.org/abs/1905.04215

(代码将开源)

表情识别 | 区域注意力网络用于针对姿态变化和遮挡鲁棒的人脸表情识别

Region Attention Networks for Pose and Occlusion Robust Facial Expression Recognition

Kai Wang, Xiaojiang Peng, Jianfei Yang, Debin Meng, Yu Qiao

https://arxiv.org/abs/1905.04075

https://github.com/kaiwang960112/Challenge-condition-FER-dataset

CVPR 2019

超分辨率 | 使用传感器RAW数据进行超分辨率,比RGB图像获得更好的效果

Zoom To Learn, Learn To Zoom

Xuaner Cecilia Zhang, Qifeng Chen, Ren Ng, Vladlen Koltun

https://arxiv.org/abs/1905.05169v1

https://ceciliavision.github.io/project-pages/project-zoom.html

感慨技术发展太快,人真的很有限,这些项目里肯定有很多有意思的研究,不能一一探究,只能择其一二解读。

本文分享自微信公众号 - 我爱计算机视觉(aicvml),作者:CV君

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-05-18

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • CV Code | 本周计算机视觉新出开源代码汇总(含目标检测、深度估计、视频识别、网络加速算法等)

    计算机视觉技术发展迅速,很多时候,可悲的不是我们没有努力,而是没有跟上时代的步伐。努力coding终于出来结果了,却发现早就有人开源了,效果还比自己写的好!

    CV君
  • CV Code|计算机视觉开源周报20200602期~文末送书

    其中CV君以为最为值得关注的是密歇根大学发布的VirTex算法,从文字描述中训练视觉模型,得到更具表示能力的主干网络,在多个视觉任务中表现优异。这种结合CV 与...

    CV君
  • CV Code | 本周新出计算机视觉开源代码汇总(含实例分割、行人检测、姿态估计、神经架构搜索、超分辨率等)

    计算机视觉技术发展迅速,很多时候,可悲的不是我们没有努力,而是没有跟上时代的步伐。努力coding终于出来结果了,却发现早就有人开源了,效果还比自己写的好!

    CV君
  • 有意思的文献

    版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/zhangjunhit/article/de...

    用户1148525
  • CV Code | 本周计算机视觉新出开源代码汇总(含目标检测、深度估计、视频识别、网络加速算法等)

    计算机视觉技术发展迅速,很多时候,可悲的不是我们没有努力,而是没有跟上时代的步伐。努力coding终于出来结果了,却发现早就有人开源了,效果还比自己写的好!

    CV君
  • CV Code|计算机视觉开源周报20200602期~文末送书

    其中CV君以为最为值得关注的是密歇根大学发布的VirTex算法,从文字描述中训练视觉模型,得到更具表示能力的主干网络,在多个视觉任务中表现优异。这种结合CV 与...

    CV君
  • 2020年计算机视觉学习指南

    原文:https://towardsdatascience.com/guide-to-learn-computer-vision-in-2020-36f19d9...

    材ccc
  • 一周AI最火论文 | AI素描完美还原3D图形,再次一败涂地的人类

    呜啦啦啦啦啦啦啦大家好,本周的AI Scholar Weekly栏目又和大家见面啦!

    大数据文摘
  • 一周AI最火论文 | 再见,scikit-learn!终于等到新ML Python包

    呜啦啦啦啦啦啦啦大家好,本周的AI Scholar Weekly栏目又和大家见面啦!

    大数据文摘
  • 资源 | 生成对抗网络新进展与论文全集

    选自GitHub 参与:蒋思源、吴攀 生成对抗网络(GAN)是近段时间以来最受研究者关注的机器学习方法之一,深度学习泰斗 Yann LeCun 就曾多次谈到 这...

    机器之心

扫码关注云+社区

领取腾讯云代金券