专栏首页我爱计算机视觉CVPR 2019 | 西北工业大学开源拥挤人群数据集生成工具,大幅提升算法精度

CVPR 2019 | 西北工业大学开源拥挤人群数据集生成工具,大幅提升算法精度

近年来,因为拥挤人群计数在视频监控、公共安全方面的应用广泛,引起了不少学者的关注。

简单说来这个任务就是给定图像,返回该图像所描述场景中有多少人。

这可以帮助城市管理者、大型活动组织方实时了解人群拥挤情况,以利于早期防范群体事件、人群踩踏等。

和大多数计算机视觉任务面临相同的困境,视频数据容易获取,但标注却是个耗费大量人力物力的工作。

今天新上传到arXiv 的 CVPR 2019 的接收论文《Learning from Synthetic Data for Crowd Counting in the Wild》,来自西北工业大学的学者提出使用计算机图形工具创建拥挤人群数据集的方法,并开源了他们创建的大型数据集,在此数据集上训练的算法精度获得了大幅提升,超越了之前的state-of-the-art。

作者信息:

作者全部来自西北工业大学。

作者使用计算机图形学的方法,通过设置不同的多样化的场景、设置不同的人物模型,创建了大量的样本数据。

下图是与现有数据集的比较,可见该论文中提出的GCC数据集是目前最大的公开数据集。

同时,该数据集在每幅图像中行人个数、时间分布、天气情况分布各个方面也具有多样性,非常适合人群计数任务。

如何用这个数据集?

该数据集是合成数据集,作者提出两种方法,使用该数据集参与算法训练。

如下图,上面部分为监督学习方法,下面部分为使用域适应的方法。

一种是监督学习的方法,使用该大型数据集预训练网络,再在实际的真实场景数据集中微调网络。

使用这种方法,作者采用的网络模型:

获得了超越目前该任务state-of-the-art的精度。

使用域适应方法的算法流程图:

使用该数据集后,算法同样获得了大幅的精度提升。

作者已经公开了该数据集,并开源了数据创建标注工具。

https://github.com/gjy3035/GCC-CL

项目主页:

https://gjy3035.github.io/GCC-CL/

论文地址:

https://arxiv.org/pdf/1903.03303.pdf

感谢各位作者!

本文分享自微信公众号 - 我爱计算机视觉(aicvml),作者:CV君

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-03-11

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • TMM|车辆重识别的一些实践

    链接:https://zhuanlan.zhihu.com/p/186905783

    CV君
  • 新思路!商汤开源利用无标注数据大幅提高精度的人脸识别算法

    人脸识别是最近几年计算机视觉领域取得长足进步的领域,这得益于不断进步的深度学习强大的模型拟合能力和有标注的大型数据集的建立,已经出现了用于人脸识别的有标注的百万...

    CV君
  • 数据不够,游戏来凑!随机三维人物实现可泛化的行人再辨识(ReID)

    【导语】数据不够,游戏来凑!阿联酋起源人工智能研究院(IIAI)科学家通过随机组合颜色和纹理产生了8000个三维人物模型,并在游戏环境里模拟真实监控得到一个虚拟...

    CV君
  • 数据是工业4.0的核心驱动,工业大数据两个案例剖析

    导读:智能分析和网络物理系统的出现,为我们实现生产管理和工厂转型提供了新的思路。而工业大数据通过360度全景的数字视角,为制造业带来了新的优势,它将提供预测自主...

    钱塘数据
  • 从大数据中「提炼」出商业见解,企业还有很多工作要做

    编者按:随着互联网的普及化以及物联网的快速发展,人们产生的数据也越来越多。早几年前,马云就突出了当前是“DT”时代的说法。但数据的多并不代表着就是好事,只有被利...

    小莹莹
  • 透过数据魔镜看人看物看世界

    万物皆数,透过数据的魔镜能够帮助人类照出万物的本质,看人看物看世界。正如实现心愿的如意——如意如意快快显灵,数据的如意如今已经成为评判人和物的标尺,给人给物画像...

    机器思维研究院
  • 数据清洗 Chapter01 | 数据清洗概况

    这篇文章讲述的是数据存储方式和数据类型等基本概念、数据清洗的必要性和质量评价的关键点。希望这篇数据清洗的文章对您有所帮助!如果您有想学习的知识或建议,可以给作者...

    不温卜火
  • DàYé玩转数据战略Step By Step

    我们先看看工业革命的演进路径,从1.0的蒸汽机时代,到2.0的电力、流水线和大规模生产时代,再到3.0的计算机自动化时代,最后是4.0的智能化时代。

    曲水流觞
  • 【钱塘号专栏】“数据化”是未来企业生死的课题

      作为传统工业的代表,通用电气都想通了,和人家说,我已经拥有千万级的数据点,传统企业还有什么可犹豫的?

    钱塘数据
  • 大数据到底应该如何学?大数据生态圈技术组件解析

    要说什么是大数据我想大家多少已经有所了解了,很多落地的案例已经深入到了我们的生活中。大数据具有数据量大、数据类型丰富复杂、数据增长速度快等特点,一切的数据分析必...

    大数据文摘

扫码关注云+社区

领取腾讯云代金券