前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >利用边缘监督信息加速Mask R-CNN实例分割训练

利用边缘监督信息加速Mask R-CNN实例分割训练

作者头像
CV君
发布2019-12-27 15:24:24
5660
发布2019-12-27 15:24:24
举报

今天跟大家分享一篇有意思的arXiv上新出的论文,作者来自德国宝马汽车公司(BMW Car IT GmbH,Germany)的两位实习生。

Mask R-CNN是实例分割的经典模型,作者通过在Mask R-CNN框架上附加一个新任务,达到更快的网络收敛速度。 该文对MaskR-CNN添加了一个新的预测任务,称为Edge Agreement Head(也许可以翻译为“边缘协定预测端”?),它的灵感来自人工实例标注的方式。当人们对实例进行像素级标注的时候,仅仅会关注实例的边缘部分,而实例内部则只需要简单的复制边缘的标注信息就可以了。所以实例的mask边缘非常有用,它们很好地表征了实例。Edge Agreement Head的作用即鼓励深度网络训练时预测的实例mask边缘与groundtruth的边缘相似。

算法思想

作者通过观察Mask R-CNN训练前期输出的预测图像,发现很多时候边缘都不在点上,很显然,神经网络在走弯路。 请看下面的例子:

这是Mask R-CNN深度网络训练前期的一些预测的Mask,发现它并没有像人类一样先把边缘找出来,甚至缺失的很离谱(你可以预测的不很精细准确,但至少要表现出在向这个方向努力吧!)。 为了避免神经网络走弯路,作者把实例的边缘信息作为一种监督的指引,即将groundtruth进行边缘滤波,让神经网络同时去预测实例的边缘。指了条明路。 Mask R-CNN的多任务损失函数:

具体的做法是,增加一个新分支,预测边缘并与groundtruth的边缘相比较,请看下图

作者仅是对每个实例28*28大小区域内(所以增加的计算量有限)进行上述操作,通过添加简单的3*3边缘检测计算预测和groundtruth的边缘,因为边缘检测往往和图像平滑一起用,所以右边的图增加了平滑的步骤。 上图中Lp代表计算两者差异的方式,如下:

p代表像素差值的幂次方参数。

作者尝试了普通的Sobel滤波和Laplacian滤波检测边缘。

作者通过Edge Agreement Head方式增加了一个损失函数,模型复杂度略微增加,没添加任何额外的需要训练的模型变量,训练的计算成本增加很小,而网络推断时不增加计算量。

实验结果 作者在MS COCO 2017数据集上做了实验,比较训练达到160k steps时基准模型和提出的模型的COCO AP metrics精度。

Table 1说明当训练达到160k steps时,使用Edge Agreement Head的模型训练达到了更高的精度,尤其是使用Soble边缘算子的模型。 Table 2表明不使用图像平滑加速更加明显,达到更高的精度。 预测结果比较图示:

Table 4表明,拉长训练时间,使用Edge Agreement Head仍然获得了更高的精度。

该文没有开源代码。

总结 这篇论文很简单,但给出的结论很有意思,Edge Agreement Head相当于提供了更多的监督信息,为深度网络指了一个方向,少走一些弯路。尤其在训练早期,网络更容易迷茫的时候就更需要指条明路。 尤其值得一提的是,很显然边缘信息可以有助于所有图像像素级理解的应用,比如深度估计、光流计算等,大家不妨一试。

论文地址: https://arxiv.org/abs/1809.07069v1

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2018-09-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 我爱计算机视觉 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档