前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >波士顿房价预测——回归分析案例(献给初学者)

波士顿房价预测——回归分析案例(献给初学者)

作者头像
机器思维研究院
发布2020-01-15 16:39:45
40.2K0
发布2020-01-15 16:39:45
举报
文章被收录于专栏:AI机器思维

作者Nature

出品AI机器思维

人类生活的现实社会经常遇到分类与预测的问题,目标变量可能受多个因素影响,根据相关系数可以判断影响因子的重要性。正如一个病人得某种病是多种因素影响造成的。

房价的高低也是受多个因素影响的,如房子所处的城市是一线还是二线,房子周边交通方便程度如通不通地铁,房子周边学校和医院等,这些都影响了房子的价格。

医学领域根据自变量以及某个阈值判断病因归属。生物领域根据父辈的基因经过回归分析判断对子辈的影响。

今天给大家通过案例讲讲回归分析,回归分析在经济、社会学、医学、生物学等领域得到了广泛的应用,这种技术最早可以追溯到达尔文(Charles Darwin)时期。

达尔文的表弟Francis Galton致力于研究父代豌豆种子尺寸对子代豌豆尺寸的影响,采用了回归分析。回归分析对人体健康研究也可以重要,病因分析。19世纪高斯系统地提出最小二乘估计,从而使回归分析得到蓬勃发展。

目前回归分析的研究范围可以分为如下几个部分组成:

线性回归:一元线性回归、多元线性回归和多个因变量与多个自变量的回归。

回归诊断:通过数据推断回归模型基本假设的合理性、基本假设不成立时对数据的修正、回归方程拟合效果的判断以及回归函数形式的选择。

回归变量的选择:根据什么标准选择自变量和逐步回归分析方法。

参数估计方法:偏最小二乘回归、主成分回归和岭回归。

非线性回归:一元非线性回归、分段回归和多元非线性回归。

定性变量的回归:因变量含有定性变量和自变量含有定性变量。

现实中常用的回归分析是线性回归、逻辑回归、多项式回归和岭回归。

本节以线性回归案例讲解,以波士顿房价数据集为线性回归案例数据,进行模型训练,不讲过多理论,理论大家可以自己去看资料,到处都是理论材料。

波士顿房价数据说明:此数据源于美国某经济学杂志上,分析研究波士顿房价( Boston HousePrice)的数据集。数据集中的每一行数据都是对波士顿周边或城镇房价的情况描述,下面对数据集变量说明下,方便大家理解数据集变量代表的意义。

CRIM: 城镇人均犯罪率 ZN: 住宅用地所占比例 INDUS: 城镇中非住宅用地所占比例 CHAS: 虚拟变量,用于回归分析 NOX: 环保指数 RM: 每栋住宅的房间数 AGE: 1940 年以前建成的自住单位的比例 DIS: 距离 5 个波士顿的就业中心的加权距离 RAD: 距离高速公路的便利指数 TAX: 每一万美元的不动产税率 PTRATIO: 城镇中的教师学生比例 B: 城镇中的黑人比例 LSTAT: 地区中有多少房东属于低收入人群 MEDV: 自住房屋房价中位数(也就是均价)

首先对数据分析,处理特殊异常值,然后才是模型和评估,并应用模型进行预测。

1.首先导入数据集,对数据进行分析

程序运行后结构现实特征变量如下:

对上面程序加入如下语句分析数据集数据样本总数,与特征变量个数:

程序运行后显示波士顿数据集506个样本,13个特征变量

我们根据经验也可以看到,房价的高低在中国具体的房价就有太多维度了,比方说学区房、超市、菜场、高铁、机场、地铁、就业等等,而波士顿房价给出了13个特征维度变量预测房价,和中国比还是有很大差距的。国情不一样也影响房价。

继续对上面数据分析,查看前五条数据,看下这13个变量数据情况:

程序运行后结果显示前5条数据如下:

2.对自变量进行特征分析,并画出散点图,分析因变量与自变量的相关性,把不相关的数据剔除。

程序如下:

程序运行后结果显示如下:

CRIM: 城镇人均犯罪率

ZN: 住宅用地所占比例

INDUS: 城镇中非住宅用地所占比例

CHAS: 虚拟变量,用于回归分析

NOX: 环保指数

RM: 每栋住宅的房间数

AGE: 1940 年以前建成的自住单位的比例

DIS: 距离 5 个波士顿的就业中心的加权距离

RAD: 距离高速公路的便利指数

TAX: 每一万美元的不动产税率

PTRATIO: 城镇中的教师学生比例

B: 城镇中的黑人比例

LSTAT: 地区中有多少房东属于低收入人群

经过上面散点图的分析,可以看到数据异常的变量需要特殊处理,根据散点图分析,房屋的’RM(每栋住宅的房间数)’,‘LSTAT(地区中有多少房东属于低收入人群)’,'PTRATIO(城镇中的教师学生比例)’特征与房价的相关性最大,所以,将其余不相关特征剔除。

二、任务介绍 1、通过数据挖掘对影响波士顿房价的因素进行分析。 2、搭建一个波士顿房价预测模型。

本案例我们以每栋住宅的房间数RM研究与房价的关系。

程序如下:

程序执行后模型相关系统如下:

图形显示如下:

通过分析可以看出住宅平均房间数与最终房价一般成正相关。

对上面程序改造,我们也可以分析其他特征变量对房价的影响。具体大家可以根据案例改造学习。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-01-06,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI机器思维 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
数据库
云数据库为企业提供了完善的关系型数据库、非关系型数据库、分析型数据库和数据库生态工具。您可以通过产品选择和组合搭建,轻松实现高可靠、高可用性、高性能等数据库需求。云数据库服务也可大幅减少您的运维工作量,更专注于业务发展,让企业一站式享受数据上云及分布式架构的技术红利!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档