专栏首页marsggbo论文笔记系列--MnasNet:Platform-Aware Neural Architecture Search for Mobile
原创

论文笔记系列--MnasNet:Platform-Aware Neural Architecture Search for Mobile

本文介绍一篇针对移动端自动设计网络的文章《MnasNet:Platform-Aware Neural Architecture Search for Mobile》,由Google提出,很多后续工作都是基于这个工作改进的,因此很有必要学习了解。

Related work

MnasNet的目的很简单就是设计出表现又好,效率又高的网络。在介绍之前简单回顾一下现有的一些提高网络效率的方法:

  • quantization:就是把模型的权重用更低精度表示,例如之前使用float32来存储权重,那么我们可以试着用8位来存,更极致的思路是0,1来存,这就是Binary Network,也有一些工作研究这个,本文不做细究。
  • pruning:就是把模型中不重要的参数删掉。常用的一种剪枝方法是对通道数进行剪枝,因为这种方法实现起来方便,得到的模型结构也是规则的,计算起来也方便。
  • 人工设计模块 - ShuffleNet
    上图(a)就是加入Depthwise的ResNet bottleneck结构,而(b)和(c)是加入Group convolution和Channel Shuffle的ShuffleNet的结构。 - MobileNet:引入Depthwise Separable Convolution (DWConv) - MobileNetv2:在DWConv基础上引入inverted residuals and linear bottlenecks
    inverted residual conv
    - SqueezeNet 卷积模块设计思路如下图示,首先使用1x1卷积对输入特征图做压缩,所以叫做Squeeze层;压缩之后需要经过Expand层还原,这里会对压缩后的特征做两路还原,一路用1x1卷积,另一路用3x3卷积,最后对两路的结果做concat。
    squeezenet
    看下图可能会更加有助于理解:
    squeeze-expand
    - CondenseNet: 参考文章CondenseNet算法笔记

MnasNet算法介绍

优化目标

之前的NAS算法(如DARTS,ENAS)考虑更多的是模型最终结果是否是SOTA,MnasNet则是希望搜索出又小又有效的网络结构,因此将多个元素作为优化指标,包括准确率,在真实移动设备上的延迟等,最终定义的优化函数如下:

$$

\begin{array}{l}{\quad \underset{m}{\operatorname{maximize}} \quad A C C(m) \times\left\frac{L A T(m)}{T}\right^{w}} \tag{1} \

{\text { where } w \text { is the weight factor defined as: }} \

{\qquad w=\left{\begin{array}{ll}{\alpha,} & {\text { if } L A T(m) \leq T} \ {\beta,} & {\text { otherwise }}\end{array}\right.}

\end{array}

$$

上式中个符号含义如下:

  • $m$表示模型(model)
  • $ACC(m)$表示在特定任务上的结果(如准确率)
  • $LAT(m)$表示在设备上测得的实际计算延迟时间
  • $T$表示目标延迟时间(target latency)
  • $w$表示不同场景下对latency的控制因子。当实测延迟时间$LAT(m)$小于目标延迟时间$T$时,$w=α$;反之$w=β$

上面式子其实表示为帕累托最优,因为一般而言延迟越长,代表模型越大,即参数越大,相应地模型结果也会越好;反之延迟越小,模型表现也会有略微下降。

文中提到latency单位提升会带来5%的acc提升。也就是说假如模型A最终延迟为t,准确率为a;模型B延迟为2t,那么它的准确率应该是a(1+5%)。但是这两个模型的reward应该是相等地,套用上面的公式有

$$

Reward(A)=a\times(t/T)^\beta \

Reward(B)=a(1+5\%)(2t/T)^\beta

$$

求解得到$\alpha=\beta=-0.7$

搜索空间

之前的NAS算法都是搜索出一个比较好的cell,然后重复堆叠若干个cell得到最终的网络,这种方式很明显限制了网络的多样性。MnasNet做了一些改进可以让每一层不一样,具体思路是将模型划分成若干个block,每个block可以由不同数量的layer组成,每个layer则由不同的operation来表示,

Net
   |__block
          |__layer
               |___operations

示意图如下:

MnasNet搜索空间

可以看到搜索空间包含如下:

  • 标准卷积,深度可分离卷积(DWConv), MBConv(即上面提到的MobileNetV2的卷积模块)
  • 卷积核大小:3, 5, 7等
  • Squeeze-and-excitation ratio (SE-Ratio): 0, 0.25
  • Skip-connection
  • 输出通道数
  • 不同block中的layer数量 $N_i$

搜索算法

和ENAS一样使用的是强化学习进行搜索,这里不做细究(其实论文里也没怎么说)。

实验

实验设置

之前的算法都是先在CIFAR10上搜索得到网络后,再在ImageNet上训练一个更大的网络。MnasNet则是直接在ImageNet上搜网络,但是只是在训练集上搜了5个epoch。

实验结果

ImageNet实验结果

下图中的结果和预期一样,延迟越高,结果会稍微好一些。

ImageNet结果

作者还对比了SE模块的效果,结果如下,可以看到效果还是不错的。

SE Module

有的时候为了适应实际场景需要,我们会对模型的通道数量进行修改,例如都砍掉一半或者增加一倍等,这样就可以达到模型大小减小或增大的作用了,这个可以由depth multipilier参数表示。但是有下面的结果可以看出和MobileNetV2相比,基于MnasNet找到的网络对于通道数量变化鲁棒性更强(左图),同样对于输入数据大小也更加具有鲁棒性(右图)。

enter description here

消融实验(Ablation Study)

Soft vs. Hard Latency Constraint

前面介绍过用于控制延迟时间的因子 $\alpha$和$\beta$,实验对比了两组参数设置:

  • $\alpha=0,\beta=-1$
  • $\alpha=-0.07,\beta=-0.07$。实验结果如下:

设置的目标延迟时间为75ms,可以看到第二个参数配置能够覆盖更加广的模型结构

latency constraint

多目标优化和搜索空间

这一个实验探究的是本文提出的多目标优化和搜索空间的有效性,一共设置了三组实验,其中baseline是NASNet,实验结果如下:

可以看到多目标优化能够找到延迟更小的网络,而Mnas提出的搜索空间对模型表现也有一定提升。

multi-obj and search space

MnasNet结构和Layer多样性

下图给出了搜索得到的MnasNet的结构,可以看到每层结构都不太一样,不像之前的算法是简单地叠加而成。

layer diversity

最后作者还对比了使用单一操作组成的网络结果对比,实验结果如下,可以看到虽然只使用MBConv5(k5x5)最终accuracy最高,但是他的推理延迟也很高,所以综合来看还是MnasNet-A1表现最好。

<footer style="color:white;;background-color:rgb(24,24,24);padding:10px;border-radius:10px;"><br>

<h3 style="text-align:center;color:tomato;font-size:16px;" id="autoid-2-0-0"><br>

<b>MARSGGBO</b><b style="color:white;"><span style="font-size:25px;">♥</span>原创</b>

<span>如有意合作或学术讨论欢迎私戳联系~

微信:marsggbo

邮箱:marsggbo@foxmail.com</span>

<b style="color:white;">

2020-01-22 16:47:46 <p></p>

</b><p><b style="color:white;"></b>

</p></h3><br>

</footer>

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • [转载]对深度可分离卷积、分组卷积、扩张卷积、转置卷积(反卷积)的理解

    在可分离卷积(separable convolution)中,通常将卷积操作拆分成多个步骤。而在神经网络中通常使用的就是深度可分离卷积(depthwise se...

    marsggbo
  • 卷积操作转化成矩阵乘法

    平常都是无脑使用Pytorch提供的nn.Conv2d方法,但是并不关心具体该如何实现,原来是把卷积操作转化成矩阵乘法,而不是真的通过滑动卷积核来做卷积,下面做...

    marsggbo
  • 论文笔记系列--MnasNet:Platform-Aware Neural Architecture Search for Mobile

    MnasNet的目的很简单就是设计出表现又好,效率又高的网络。在介绍之前简单回顾一下现有的一些提高网络效率的方法:

    marsggbo
  • 干货|最全面的卷积神经网络入门教程

    卷积网络 (convolutional network)(LeCun, 1989),也叫做卷积神经网络 (convolutional neural networ...

    深度学习技术前沿公众号博主
  • 卷积神经网络学习路线(二十一) | 旷世科技 ECCV 2018 ShuffleNet V2

    这个系列已经更新了20多篇了,感谢一直以来大家的支持和等待。前面已经介绍过MobileNet V1,MobileNet V2,MobileNet V3,Shuf...

    BBuf
  • 如何计算CNN感受野、计算量和模型大小

    下面以最经典的AlexNet模型为例子,计算感受野,模型计算量和大小(内存)。下面这张图是AlexNet的结构图,看起来比较直观。

    chaibubble
  • 教程 | 可视化CapsNet,详解Hinton等人提出的胶囊概念与原理

    选自freecodecamp 作者:Nick Bourdakos 机器之心编译 参与:Pedro、思源 CapsNet 将神经元的标量输出转换为向量输出提高了表...

    机器之心
  • 教程 | 可视化CapsNet,详解Hinton等人提出的胶囊概念与原理

    选自freecodecamp 作者:Nick Bourdakos 机器之心编译 参与:Pedro、思源 CapsNet 将神经元的标量输出转换为向量输出提高了表...

    朱晓霞
  • PMP-资源优化:资源平衡、资源平滑区别和举例,附对比图收藏

    资源平衡VS资源平滑:原文链接:https://www.ffeeii.com/1657.html

    yunfeiyun
  • Hadoop框架:HDFS读写机制与API详解

    第一个副本和client在一个节点里,如果client不在集群范围内,则这第一个node是随机选取的;第二个副本和第一个副本放在相同的机架上随机选择;第三个副本...

    知了一笑

扫码关注云+社区

领取腾讯云代金券