前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >JVM第一弹

JVM第一弹

原创
作者头像
趣学程序-shaofeer
修改2020-02-11 09:50:17
2420
修改2020-02-11 09:50:17
举报
文章被收录于专栏:upuptop的专栏upuptop的专栏

JVM第一弹

基本概念

JVM是可运行java代码的假想计算机,包括一套字节码指令集,一组寄存器,一个栈,一个垃圾回收、堆和一个存储方法域。JVM是运行在操作系统之上的,它与硬件没有直接的交互。

运行过程

我们都知道Java代码源文件,通过编译器能够产生相应的.Class字节码文件,而字节码文件又通过Java虚拟机中的解释器,编译成特定机器上的机器码。

① Java源文件 ——> 编译器 ——> 字节码文件

② 字节码文件 ——> JVM ——> 机器码

每种平台的解释器是不同的,但是虚拟机是相同的,这也就是java为什么能够跨平台的原因了。当一个程序从开始运行,这时虚拟机就开始实例化了,多个程序 启动就会存在多个虚拟机实例。

程序退出或者关闭,则虚拟机实例消亡,多个虚拟机实例之间数据不能共享。

类加载器

什么是类的加载?

类的加载是指将类的字节码文件数据读入到内存中,将其放在运行时数据区的方法区内,然后在堆区创建一个java.lang.Class对象,用来封装类在方法区内的数据结构。

类的加载的最终产品是位于堆区内中的Class对象,Class对象封装了类在方法区内的数据结构,并且向java程序员提供了访问方法区内的数据结构的接口。

类加载器包括:

  1. 启动类加载器(BootStrap)
代码语言:txt
复制
    ——主要有C++进行实现的。用来加载jdk安装目录下的:jre/lib下的可执行jar包。
代码语言:txt
复制
    也可以通过设置 -XbootClasspath来动态指定jar包位置。在java代码中无法获取到该对象。
代码语言:txt
复制
String str = new String("HelloWorld");

System.out.println(str.getClass().getClassLoader());



//控制台打印null
  1. 扩展类加载器(ExtClassLoader)
代码语言:txt
复制
——是java代码实现的,用来加载java安装目录下 jre/lib/ext 目录中的可执行jar包。
  1. 应用程序类加载器(AppClassLoader)
代码语言:txt
复制
 ——是java代码实现的,用来加载用户编写的代码。我们新建一个类,获取其类加载器就是AppClassLoade
代码语言:txt
复制
public class MyClassLoaderTest {



    public static void main(String[] args) {

        String str = new String("HelloWorld");

        // 打印null

        System.out.println(str.getClass().getClassLoader());





        // 打印sun.misc.Launcher$AppClassLoader@18b4aac2

        System.out.println(MyClassLoaderTest.class.getClassLoader());

        // 打印sun.misc.Launcher$ExtClassLoader@4554617c

        System.out.println(MyClassLoaderTest.class.getClassLoader().getParent());

        // 打印null

        System.out.println(MyClassLoaderTest.class.getClassLoader().getParent().getParent());



    }



}

由上述代码可见: **AppClassLoader extend ExtClassLoader extend BootstrapClassLoader**

  1. 用户自定义类加载器
代码语言:txt
复制
—— 用户编写类继承自 java.lang.ClassLoade

为了防止用户自定义类与jdk自带的类冲突,jdk内有双亲委派机制和沙箱机制。

双亲委派机制

上述过程中,我们认识到了类加载器之间的继承关系。当java在加载类的时候,由AppClassLoader委派其父类ExtClassLoader进行加载,ExtClassLoader会再次委派其父类BootStrapClassLoader进行加载,

如果BootStrapClassLoader找到该类那么加载该类返回该类的Class对象,但是,如果此时BootStrapClassLoader没有找到该类,

那么就需要ExtClassLoader自身进行加载,如果ExtClassLoader找到该类那么加载该类返回该类的Class对象,

但是,如果ExtClassLoader也没有找到该类,那么就要由AppClassLoader进行加载。

如果最后AppClassLoader也没有找到该类,那么就会抛出 ClassNotFoundException

(**类加载器没有向下寻找,没有getChild只有getParent**)

**如果你自己定义了一个与jdk自带类名包名一致的类,那么java也不会去加载该类。**

JVM结构

JVM内存区域主要分为

  • 线程私有区域
  1. 程序计数器
  2. 虚拟机栈
  3. 本地方法区
  • 线程共享区域
  1. Java堆
  2. 方法区
  • 直接内存

**生命周期**

  1. 线程私有数据区域生命周期与线程相同,依赖用户线程的启动/结束而创建/销毁。
  2. 线程共享区域随着虚拟机的启动/关闭 而 创建/销毁。

方法区和堆是所有线程共享的内存区域;而java栈、本地方法栈和程序计数器是运行时线程私有的内存区域。

  • 方法区
代码语言:txt
复制
主要存放静态变量,常量,Class类模板(接口定义,构造函数),运行时常量池。
  • java堆(Heap),是Java虚拟机所管理的内存中最大的一块。Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例都在这里分配内存。又被称作为运行时数据区。
  • 程序计数器(Program Counter Register),是一块比较小的内存空间,它的作用可以看做是当前线程所执行的字节码的行号指示器。每个线程都有一个私有的,可以理解为它是一个指针,指向方法字节码地址,用来标记下一个要执行的方法字节码地址。
  • JVM栈(JVM Stacks),与程序计数器一样,Java虚拟机栈(Java Virtual Machine Stacks)也是线程私有的,它的生命周期与线程相同,线程结束栈内存也就释放了,对于栈来说不存在来及回收的问题。主要保存八大基本数据类型的变量、对象的引用变量以及实例方法。虚拟机栈描述的是Java方法执行的内存模型:每个方法被执行的时候都会同时创建一个栈帧(Stack Frame)用于存储局部变量表、操作栈、动态链接、方法出口等信息。每一个方法被调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。
  • 本地方法栈(Native Method Stacks),与c/c++交互的一块区域,本地方法栈(Native Method Stacks)与虚拟机栈所发挥的作用是非常相似的,其区别不过是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的Native方法服务。

垃圾回收器

  • Serial收集器,串行收集器是最古老,最稳定以及效率高的收集器,可能会产生较长的停顿,只使用一个线程去回收。
  • ParNew收集器,ParNew收集器其实就是Serial收集器的多线程版本。
  • Parallel收集器,Parallel Scavenge收集器类似ParNew收集器,Parallel收集器更关注系统的吞吐量。
  • Parallel Old 收集器,Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法
  • CMS收集器,CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。
  • G1收集器,G1 (Garbage-First)是一款面向服务器的垃圾收集器,主要针对配备多颗处理器及大容量内存的机器. 以极高概率满足GC停顿时间要求的同时,还具备高吞吐量性能特征

调优命令

Sun JDK监控和故障处理命令有 jpsjstatjmapjhatjstackjinfo

  • jps,JVM Process Status Tool,显示指定系统内所有的HotSpot虚拟机进程。
  • jstat,JVM statistics Monitoring是用于监视虚拟机运行时状态信息的命令,它可以显示出虚拟机进程中的类装载、内存、垃圾收集、JIT编译等运行数据。
  • jmap,JVM Memory Map命令用于生成heap dump文件
  • jhat,JVM Heap Analysis Tool命令是与jmap搭配使用,用来分析jmap生成的dump,jhat内置了一个微型的HTTP/HTML服务器,生成dump的分析结果后,可以在浏览器中查看
  • jstack,用于生成java虚拟机当前时刻的线程快照。
  • jinfo,JVM Configuration info 这个命令作用是实时查看和调整虚拟机运行参数。

调优工具

常用调优工具分为两类

  1. jdk自带监控工具:jconsole和jvisualvm
  • jconsole,Java Monitoring and Management Console是从java5开始,在JDK中自带的java监控和管理控制台,用于对JVM中内存,线程和类等的监控
  • jvisualvm,jdk自带全能工具,可以分析内存快照、线程快照;监控内存变化、GC变化等。
  1. 第三方有:MAT(Memory Analyzer Tool)、GChisto。
  • MAT,Memory Analyzer Tool,一个基于Eclipse的内存分析工具,是一个快速、功能丰富的Java heap分析工具,它可以帮助我们查找内存泄漏和减少内存消耗
  • GChisto,一款专业分析gc日志的工具

你知道哪些JVM性能调优

  • 设定堆内存大小

-Xmx:堆内存最大限制。

  • 设定新生代大小。
代码语言:txt
复制
新生代不宜太小,否则会有大量对象涌入老年代
代码语言:txt
复制
`-XX:NewSize`:新生代大小
代码语言:txt
复制
`-XX:NewRatio` 新生代和老生代占比
代码语言:txt
复制
`-XX:SurvivorRatio`:伊甸园空间和幸存者空间的占比
  • 设定垃圾回收器
代码语言:txt
复制
年轻代用 `-XX:+UseParNewGC`
代码语言:txt
复制
年老代用`-XX:+UseConcMarkSweepGC`

什么时候出现栈溢出

递归操作,程序没有出口会一直进行压栈操作

为什么会出现栈溢出

栈的深度不够了

堆内存

逻辑上分为

  • 新生区
  • 养老区
  • 永久区

物理上分为

新生区 、 养老区、 永久区

又将新生区分为了三个区

  • 伊甸园区(80%)
  • 幸存者from区(10%)
  • 幸存者to区(10%)

新new的对象都放在伊甸园区,存活率2%,其他对象都被垃圾回收器回收

没有被垃圾回收幸存下来的对象将会保存到幸存者区

当伊甸园区内存不足时,会进行轻量级(minor GC)垃圾回收,将幸存者from区和伊甸园区的还在用的对象移动到幸存者to区,

然后清空幸存者from区和伊甸园区,幸存者from区清空之后会交换from区和to区,保证to区始终是空的。**注意**from区向to区移动之前会判断对象的年龄,

如果大于15,直接移动到养老区。年龄计数的原理:垃圾回收器回收一次,幸存活一次加一岁。

如果养老区的内存也不够用了,就会触动重量级GC(full GC)将养老区和新生区全量级回收垃圾对象。如果FullGC之后养老区的内存还是不够用,那么会引发OOM。

如果程序一开始就new了一个比伊甸园区大的对象,伊甸园区没有足够的空间存放应该如何存放呢?此时会将对象存放到养老区,如果养老区也不够存储,那么会引发OOM。

对象分配规则

对象优先分配在Eden区,如果Eden区没有足够的空间时,虚拟机执行一次Minor GC。

大对象直接进入老年代(大对象是指需要大量连续内存空间的对象)。这样做的目的是避免在Eden区和两个Survivor区之间发生大量的内存拷贝(新生代采用复制算法收集内存)。

长期存活的对象进入老年代。虚拟机为每个对象定义了一个年龄计数器,如果对象经过了1次Minor GC那么对象会进入Survivor区,之后每经过一次Minor GC那么对象的年龄加1,知道达到阀值对象进入老年区。

动态判断对象的年龄。如果Survivor区中相同年龄的所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象可以直接进入老年代。

空间分配担保。每次进行Minor GC时,JVM会计算Survivor区移至老年区的对象的平均大小,如果这个值大于老年区的剩余值大小则进行一次Full GC,如果小于检查HandlePromotionFailure设置,如果true则只进行Monitor GC,如果false则进行Full GC。

产生OOM的原因?

  • java设置的堆内存不够,可以通过设置 -Xms -Xmx 来调整堆内存的大小
  • java内存中创建了大量的大对象,并且长时间不能被垃圾回收器回收

java8与元数据

在java8中,永久代已经移除了,被“元数据”(元空间)的区域所取代。元空间的本质和永久代类似,元空间与永久代的最大区别在于:

**元空间并不在虚拟机中,而是使用本地内存。**因此,默认情况下,元空间的大小仅受本地内存限制。

类的源数据放入本定内存中,字符串和类的静态变量放到java堆中,这样可以加载多少类的元数据就不再由MaxPermSize控制,而由系统的实际可用空间来控制。

垃圾回收与算法

如果确定垃圾

  1. 引用计数法

在java中,引用和对象是有关联的。如果要操作对象则必须用引用进行。因此,一个简单的方法就是通过引用计数来判断一个对象是否可以回收。简单来说,即一个对象如果没有任何与之关联的引用,即他们的引用计数都不为0,则说明对象不太可能再被用到,那么这个对象就是可回收对象。

  1. 可达性分析

为了解决引用计数法的循环引用问题,java使用了可达性分析的方法。通过一系列的“GC roots”对象作为起点搜索,如果在“GC roots”和一个对象之间没有可达路径,则称该对象是不可达的。

**注意** 不可达并不等价于可回收对象,不可达对象变为可回收对象至少要经过两次标记过程。两次标记后仍是可回收对象,则将面临回收。

  1. 标记清楚算法

最基础的垃圾回收算法,分为两个阶段:**标记**和**清楚**。标记阶段是标记出来所有要回收的对象,清楚阶段回收被标记的对象所占的空间。

该算法的缺点:

内存碎片化严重,垃圾清理完成后,造成很多内存空间不连续。后续可能发生大对象不能找到可利用的问题。

**MajorGC使用该算法**

  1. 复制算法

为了解决标记清楚算法内存碎片化的缺陷而提出的算法。按照内存容量将内存划分为等大小的两块。每次只使用其中一块,当这一块内存满后将尚存活的对象复制到另一块上去,把已使用的内存清理掉。

**MinorGC使用该算法**

缺点:

这种算法虽然实现简单,内存效率高,不易产生碎片,但是最大的问题是可以用内存被压缩到了原本的一半。且存活对象增多的话,copying算法的效率也大大降低。

  1. 标记整理算法

结合以上两个算法,为了避免缺陷而提出。标记阶段和标记清楚算法相同,**标记后不是清理对象,而是将存活对象移向内存的一端。然后清楚端边界的对象.**

  1. 分代收集算法

分代收集算法是目前大部分JVM所采用的方法,其核心思想是根据对象村花的不同生命周期将内存划分为不同的域,一般情况下将GC堆划分为老生代和新生代。老生代的特点是每次垃圾回收只有少量对象需要被回收,新生代的特点是每次垃圾回收是都有大量垃圾需要被回收,因此可以根据不同区域采用不同的算法。

6.1. 新生代与复制算法

目前大部分的JVM的GC对于新生代都采取了copying方法,因为新生代中每次垃圾回收都要回收大部分对象,

即要复制的操作比较少,但通常并不是按照1:1来划分新生代。一般将新生代划分为一块较大的Eden空间和两个比较小的Surviror空间(FromSpace,ToSpace),每次使用Eden空间和其中的一块Surivor空间,当进行回收时,将该两块空间中还存活的对象复制到另外一块Survivor空间中。

6.2 老年代与标记复制算法

而老年代因为每次只回收少量的对象,因此采用Mark-Compact算法。

  1. JAVA虚拟机提到过的处于方法区的永生带,它用来存储class类,常量、方法描述等。对永生代的回收主要包括废弃常量和无用的类
  2. 对象的内存分配主要在新生代的EdenSpace和SurvivorSpace的FormSpace(Survivor目前存放对象的那一块),少数情况会直接分配到老生代。
  3. 当新生代的EdenSpace和FromSpace空间不足时就会发生一次GC,进行GC后,EdenSpace和FromSpace区的存活对象会被移动到ToSpace,然后将EdenSpace和FromSpace进行清理。
  4. 如果ToSpace无法足够存储某个对象,则将这个对象存储到老生代。
  5. 进行GC后,使用的便是EdenSpace和ToSpace了,如此反复循环。
  6. 当对象在Survivor区躲过一次GC后,其年龄就会+1。默认情况下年龄达到15的对象就会移动到老生代中

Java中的四种引用

强引用

在Java中最常见的就是强引用,**把一个对象赋值给一个引用变量,这个引用变量就是一个强引用。**

当一个对象被强引用变量引用时,它处于可达状态,它是不可能被垃圾回收机制回收的,即使该对象以后永远都不会被用到,JVM也不会回收。因此强引用是造成Java内存泄漏主要原因之一。

软引用

**软引用需要使用SoftReference类来实现**,对于只有软引用的对象来说,当系统内存足够时他不会被回收,当系统内存足够用时,它不会被回收,当系统内存不足时它会被回收。软引用通常用在对内存敏感的程序中。

弱引用

弱引用需要用WeakReference类来实现,它比软引用的生存期更短,对于只有弱引用的对象来说,只要垃圾回收机制一运行,不管JVM的内存空间足够,总会回收该对象占用的内存。

虚引用

**虚引用需要PhantomReference类来实现,它不能单独使用,必须和引用队列联合使用。**虚引用的主要作用是跟踪对象被垃圾回收的状态。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • JVM第一弹
    • 基本概念
      • 运行过程
        • 类加载器
          • 双亲委派机制
        • JVM结构
          • 垃圾回收器
            • 调优命令
              • 调优工具
                • 你知道哪些JVM性能调优
                  • 什么时候出现栈溢出
                    • 为什么会出现栈溢出
                      • 堆内存
                        • 对象分配规则
                        • 产生OOM的原因?
                      • java8与元数据
                        • 垃圾回收与算法
                          • 如果确定垃圾
                        • Java中的四种引用
                          • 强引用
                          • 软引用
                          • 弱引用
                          • 虚引用
                      相关产品与服务
                      对象存储
                      对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
                      领券
                      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档