专栏首页GiantPandaCV目标检测算法之常见评价指标(mAP)的详细计算方法及代码解析

目标检测算法之常见评价指标(mAP)的详细计算方法及代码解析

前言

之前简单介绍过目标检测算法的一些评价标准,地址为目标检测算法之评价标准和常见数据集盘点。然而这篇文章仅仅只是从概念性的角度来阐述了常见的评价标准如Acc,Precision,Recall,AP等。并没有从源码的角度来分析具体的计算过程,这一篇推文的目的就是结合代码再次详细的解释目标检测算法中的常见评价标准如Precision,Recall,AP,mAP的具体计算过程。

评价指标

由于在上面那篇推文中已经详细解释过了,所以这里就只是简单的再回顾一下,详细的解释请移步那篇推文看看。为了方便理解,还是先说一下TP,TN,FP,FN的含义。

一个经典例子是存在一个测试集合,测试集合只有大雁和飞机两种图片组成,假设你的分类系统最终的目的是:能取出测试集中所有飞机的图片,而不是大雁的图片。然后就可以定义:

  • True positives: 简称为TP,即正样本被正确识别为正样本,飞机的图片被正确的识别成了飞机。
  • True negatives: 简称为TN,即负样本被正确识别为负样本,大雁的图片没有被识别出来,系统正确地认为它们是大雁。
  • False Positives: 简称为FP,即负样本被错误识别为正样本,大雁的图片被错误地识别成了飞机。
  • False negatives: 简称为FN,即正样本被错误识别为负样本,飞机的图片没有被识别出来,系统错误地认为它们是大雁。

接下来我们就开始定义一些评价标准:

  • 准确率(Acc):准确率(Acc)的计算公式为,即预测正确的样本比例,代表测试的样本数。在检测任务中没有预测正确的负样本的概念,所以Acc自然用不到了。
  • 查准率(Precision):查准率是针对某一个具体类别而言的,公式为:,其中N代表所有检测到的某个具体类的目标框个数。
  • 召回率(Recall):召回率仍然是针对某一个具体类别而言的,公式为:,即预测正确的目标框和所有Ground Truth框的比值。
  • F1 Score:定位Wie查准率和召回率的调和平均,公式如下:。
  • IOU:先为计算mAP值做一个铺垫,即IOU阈值是如何影响Precision和Recall值的?比如在PASCAL VOC竞赛中采用的IoU阈值为0.5,而COCO竞赛中在计算mAP较复杂,其计算了一系列IoU阈值(0.05至0.95)下的mAP当成最后的mAP值。
  • mAP:全称为Average Precision,AP值是Precision-Recall曲线下方的面积。那么问题来了,目标检测中PR曲线怎么来的?可以在这篇论文找到答案,截图如下:

我来解释一下,要得到Precision-Recall曲线(以下简称PR)曲线,首先要对检测模型的预测结果按照目标置信度降序排列。然后给定一个rank值,Recall和Precision仅在置信度高于该rank值的预测结果中计算,改变rank值会相应的改变Recall值和Precision值。这里选择了11个不同的rank值,也就得到了11组Precision和Recall值,然后AP值即定义为在这11个Recall下Precision值的平均值,其可以表征整个PR曲线下方的面积。即:

在这里插入图片描述

还有另外一种插值的计算方法,即对于某个Recall值r,Precision取所有Recall值大于r中的最大值,这样保证了PR曲线是单调递减的,避免曲线出现摇摆。另外需要注意的一点是在2010年后计算AP值时是取了所有的数据点,而不仅仅只是11个Recall值。我们在计算出AP之后,对所有类别求平均之后就是mAP值了,也是当前目标检测用的最多的评判标准。

  • AP50,AP60,AP70等等代表什么意思?代表IOU阈值分别取0.5,0.6,0.7等对应的AP值。

代码解析

下面解析一下Faster-RCNN中对VOC数据集计算每个类别AP值的代码,mAP就是所有类的AP值平均值。代码来自py-faster-rcnn项目,链接见附录。代码解析如下:

# --------------------------------------------------------
# Fast/er R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Bharath Hariharan
# --------------------------------------------------------

import xml.etree.ElementTree as ET #读取xml文件
import os
import cPickle #序列化存储模块
import numpy as np

def parse_rec(filename):
    """ Parse a PASCAL VOC xml file """
    tree = ET.parse(filename)
    objects = []
    # 解析xml文件,将GT框信息放入一个列表
    for obj in tree.findall('object'):
        obj_struct = {}
        obj_struct['name'] = obj.find('name').text
        obj_struct['pose'] = obj.find('pose').text
        obj_struct['truncated'] = int(obj.find('truncated').text)
        obj_struct['difficult'] = int(obj.find('difficult').text)
        bbox = obj.find('bndbox')
        obj_struct['bbox'] = [int(bbox.find('xmin').text),
                              int(bbox.find('ymin').text),
                              int(bbox.find('xmax').text),
                              int(bbox.find('ymax').text)]
        objects.append(obj_struct)

    return objects

# 单个计算AP的函数,输入参数为精确率和召回率,原理见上面
def voc_ap(rec, prec, use_07_metric=False):
    """ ap = voc_ap(rec, prec, [use_07_metric])
    Compute VOC AP given precision and recall.
    If use_07_metric is true, uses the
    VOC 07 11 point method (default:False).
    """
    # 如果使用2017年的计算AP的方式(插值的方式)
    if use_07_metric:
        # 11 point metric
        ap = 0.
        for t in np.arange(0., 1.1, 0.1):
            if np.sum(rec >= t) == 0:
                p = 0
            else:
                p = np.max(prec[rec >= t])
            ap = ap + p / 11.
    else:
       # 使用2010年后的计算AP值的方式
        # 这里是新增一个(0,0),方便计算
        mrec = np.concatenate(([0.], rec, [1.]))
        mpre = np.concatenate(([0.], prec, [0.]))

        # compute the precision envelope
        for i in range(mpre.size - 1, 0, -1):
            mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])

        # to calculate area under PR curve, look for points
        # where X axis (recall) changes value
        i = np.where(mrec[1:] != mrec[:-1])[0]

        # and sum (\Delta recall) * prec
        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
    return ap

# 主函数
def voc_eval(detpath,
             annopath,
             imagesetfile,
             classname,
             cachedir,
             ovthresh=0.5,
             use_07_metric=False):
    """rec, prec, ap = voc_eval(detpath,
                                annopath,
                                imagesetfile,
                                classname,
                                [ovthresh],
                                [use_07_metric])
    Top level function that does the PASCAL VOC evaluation.
    detpath: 产生的txt文件,里面是一张图片的各个检测框结果。
    annopath: xml 文件与对应的图像相呼应。
    imagesetfile: 一个txt文件,里面是每个图片的地址,每行一个地址。
    classname: 种类的名字,即类别。
    cachedir: 缓存标注的目录。
    [ovthresh]: IOU阈值,默认为0.5,即mAP50。
    [use_07_metric]: 是否使用2007的计算AP的方法,默认为Fasle
    """
    # assumes detections are in detpath.format(classname)
    # assumes annotations are in annopath.format(imagename)
    # assumes imagesetfile is a text file with each line an image name
    # cachedir caches the annotations in a pickle file

    # 首先加载Ground Truth标注信息。
    if not os.path.isdir(cachedir):
        os.mkdir(cachedir)
    # 即将新建文件的路径
    cachefile = os.path.join(cachedir, 'annots.pkl')
    # 读取文本里的所有图片路径
    with open(imagesetfile, 'r') as f:
        lines = f.readlines()
    # 获取文件名,strip用来去除头尾字符、空白符(包括\n、\r、\t、' ',即:换行、回车、制表符、空格)
    imagenames = [x.strip() for x in lines]
    #如果cachefile文件不存在,则写入
    if not os.path.isfile(cachefile):
        # load annots
        recs = {}
        for i, imagename in enumerate(imagenames):
            #annopath.format(imagename): label的xml文件所在的路径
            recs[imagename] = parse_rec(annopath.format(imagename))
            if i % 100 == 0:
                print 'Reading annotation for {:d}/{:d}'.format(
                    i + 1, len(imagenames))
        # save
        print 'Saving cached annotations to {:s}'.format(cachefile)
        with open(cachefile, 'w') as f:
            #写入cPickle文件里面。写入的是一个字典,左侧为xml文件名,右侧为文件里面个各个参数。
            cPickle.dump(recs, f)
    else:
        # load
        with open(cachefile, 'r') as f:
            recs = cPickle.load(f)

    # 对每张图片的xml获取函数指定类的bbox等
    class_recs = {}# 保存的是 Ground Truth的数据
    npos = 0
    for imagename in imagenames:
        # 获取Ground Truth每个文件中某种类别的物体
        R = [obj for obj in recs[imagename] if obj['name'] == classname]
        bbox = np.array([x['bbox'] for x in R])
        #  different基本都为0/False
        difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
        det = [False] * len(R)
        npos = npos + sum(~difficult) #自增,~difficult取反,统计样本个数
        # # 记录Ground Truth的内容
        class_recs[imagename] = {'bbox': bbox,
                                 'difficult': difficult,
                                 'det': det}

    # read dets 读取某类别预测输出
    detfile = detpath.format(classname)
    with open(detfile, 'r') as f:
        lines = f.readlines()

    splitlines = [x.strip().split(' ') for x in lines]
    image_ids = [x[0] for x in splitlines] # 图片ID
    confidence = np.array([float(x[1]) for x in splitlines]) # IOU值
    BB = np.array([[float(z) for z in x[2:]] for x in splitlines]) # bounding box数值

    # 对confidence的index根据值大小进行降序排列。
    sorted_ind = np.argsort(-confidence)
    sorted_scores = np.sort(-confidence)
    #重排bbox,由大概率到小概率。
    BB = BB[sorted_ind, :]
    # 图片重排,由大概率到小概率。
    image_ids = [image_ids[x] for x in sorted_ind]

    # go down dets and mark TPs and FPs
    nd = len(image_ids)
    tp = np.zeros(nd)
    fp = np.zeros(nd)
    for d in range(nd):
        R = class_recs[image_ids[d]]
        bb = BB[d, :].astype(float)
        ovmax = -np.inf
        BBGT = R['bbox'].astype(float)

        if BBGT.size > 0:
            # compute overlaps
            # intersection
            ixmin = np.maximum(BBGT[:, 0], bb[0])
            iymin = np.maximum(BBGT[:, 1], bb[1])
            ixmax = np.minimum(BBGT[:, 2], bb[2])
            iymax = np.minimum(BBGT[:, 3], bb[3])
            iw = np.maximum(ixmax - ixmin + 1., 0.)
            ih = np.maximum(iymax - iymin + 1., 0.)
            inters = iw * ih

            # union
            uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
                   (BBGT[:, 2] - BBGT[:, 0] + 1.) *
                   (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)

            overlaps = inters / uni
            ovmax = np.max(overlaps)
            jmax = np.argmax(overlaps)

        if ovmax > ovthresh:
            if not R['difficult'][jmax]:
                if not R['det'][jmax]:
                    tp[d] = 1.
                    R['det'][jmax] = 1
                else:
                    fp[d] = 1.
        else:
            fp[d] = 1.

    # compute precision recall
    fp = np.cumsum(fp)
    tp = np.cumsum(tp)
    rec = tp / float(npos)
    # avoid divide by zero in case the first detection matches a difficult
    # ground truth
    prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
    ap = voc_ap(rec, prec, use_07_metric)

	return rec, prec, ap

这个脚本可以直接调用来计算mAP值,可以看一下附录中的最后一个链接。

附录

  • http://host.robots.ox.ac.uk/pascal/VOC/pubs/everingham15.pdf
  • http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf
  • 代码链接:https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/datasets/voc_eval.py
  • 在Darknet中调用上面的脚本来计算mAP值:https://blog.csdn.net/amusi1994/article/details/81564504

本文分享自微信公众号 - GiantPandaCV(BBuf233),作者:BBuf

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2020-01-08

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 【CNN调参】图像分类算法优化技巧(实用性很高)

    这篇论文的全名是:Bag of Tricks for Image Classification with Convolutional Neural Networ...

    BBuf
  • 《Fully Convolutional Networks for Semantic Segmentation》论文阅读

    这篇论文是拿到了CVPR2015 best paper候选的,在图像分割领域是一篇开山力作。

    BBuf
  • 卷积神经网络学习路线(四)| 如何减少卷积层计算量,使用宽卷积的好处及转置卷积中的棋盘效应?

    这是卷积神经网络的学习路线的第四篇文章,这篇文章主要为大家介绍一下如何减少卷积层的计算量,使用宽卷积的好处以及转置卷积中的棋盘效应。

    BBuf
  • jquery.cookie中的操作

    jQuery cookie是个很好的方便操作cookie。首先新建一个js文件。代码如下:

    DougWang
  • 聊聊springboot1.x及2.x的JvmGcMetrics的区别

    本文主要研究一下springboot1.x及2.x的JvmGcMetrics的区别

    codecraft
  • hdu1028(dp 或母函数)

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth...

    用户2965768
  • 谷歌T5模型刷新GLUE榜单,110亿参数量,17项NLP任务新SOTA

    在最新发布的论文《Exploring the Limits of Transfer Learning with a Unified Text-to-Text T...

    机器之心
  • 谷歌T5模型刷新GLUE榜单,110亿参数量,17项NLP任务新SOTA

    在最新发布的论文《Exploring the Limits of Transfer Learning with a Unified Text-to-Text T...

    代码医生工作室
  • T5,一个探索迁移学习边界的模型

    T5 是一个文本到文本迁移 Transformer 模型,通过将所有任务统一视为一个输入文本并输出文本,其中任务类型作为描述符嵌入到输入中。该模型使单个模型可以...

    AI科技大本营
  • 突破迁移学习局限!谷歌提出“T5” 新NLP模型,多基准测试达SOTA

    而迁移学习之所以如此有效,得益于其利用自监督任务(如语言建模或填充缺失词)在大量可用的无标注的文本数据上对模型进行预训练;接着,又在更小的标注数据集上对模型进行...

    AI科技评论

扫码关注云+社区

领取腾讯云代金券

玩转腾讯云 有奖征文活动