前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【STM32H7教程】第48章 STM32H7的FMC总线应用之是32路高速IO扩展

【STM32H7教程】第48章 STM32H7的FMC总线应用之是32路高速IO扩展

作者头像
Simon223
发布2020-02-17 10:35:58
6970
发布2020-02-17 10:35:58
举报

完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980

第48章       STM32H7的FMC总线应用之是32路高速IO扩展

本章教程为大家讲解利用STM32H7的FMC总线扩展出32路高速IO,且使用简单,实际项目中也比较有实用价值。

48.1 初学者重要提示

48.2 FMC扩展IO硬件设计

48.3 FMC扩展IO驱动设计

48.4 FMC扩展IO板级支持包(bsp_fmc_io.c)

48.5 FMC扩展IO驱动移植和使用

48.6 实验例程设计框架

48.7 实验例程说明(MDK)

48.8 实验例程说明(IAR)

48.9 总结

48.1 初学者重要提示

  1.   学习本章节前,务必优先学习第47章,需要对FMC的基础知识和HAL库的几个常用API有个认识。
  2.   为什么要做IO扩展,不是已经用了240脚的H743XIH6吗?因为开发板使用了32位SDRAM和RGB888硬件接口,消耗IO巨大,所以必须得扩展了。
  3.   扩展的32路高速IO非常实用,且使用简单,只需初始下FMC,32路IO就可以随意使用了。当前的扩展方式只支持高速输出。
  4.   FMC总线扩展32路高速IO理解成GPIO的ODR寄存器就很简单了,其实就是一个东西。

FMC扩展IO是对地址0x60001000的32bit数据空间的0和1的操作。GPIOA的ODR寄存器是对地址 0x40000000 + 0x18020000 + 0x14 空间的操作。但只能操作16个引脚。

使用总线的优势就在这里了,相当于在GPIOA到GPIOK的基础上,又扩展出GPIOL和GPIOM。

#define PERIPH_BASE            ((uint32_t)0x40000000)
#define D3_AHB1PERIPH_BASE     (PERIPH_BASE + 0x18020000)
#define GPIOA_BASE             (D3_AHB1PERIPH_BASE + 0x0000)
#define GPIOA                  ((GPIO_TypeDef *) GPIOA_BASE)

typedef struct
{
  __IO uint32_t MODER;    /*!< GPIO port mode register,               Address offset: 0x00      */
  __IO uint32_t OTYPER;   /*!< GPIO port output type register,        Address offset: 0x04      */
  __IO uint32_t OSPEEDR;  /*!< GPIO port output speed register,       Address offset: 0x08      */
  __IO uint32_t PUPDR;    /*!< GPIO port pull-up/pull-down register,  Address offset: 0x0C      */
  __IO uint32_t IDR;      /*!< GPIO port input data register,         Address offset: 0x10      */
  __IO uint32_t ODR;      /*!< GPIO port output data register,        Address offset: 0x14      */
  __IO uint16_t BSRRL;    /*!< GPIO port bit set/reset low register,  Address offset: 0x18      */
  __IO uint16_t BSRRH;    /*!< GPIO port bit set/reset high register, Address offset: 0x1A      */
  __IO uint32_t LCKR;     /*!< GPIO port configuration lock register, Address offset: 0x1C      */
  __IO uint32_t AFR[2];   /*!< GPIO alternate function registers,     Address offset: 0x20-0x24 */
} GPIO_TypeDef;

48.2 FMC扩展IO硬件设计

扩展IO涉及到的知识点稍多,下面逐一为大家做个说明。

48.2.1 第1步,先来看FMC的块区分配

注,这个知识点在前面第47章的2.3小节有详细说明。

FMC总线可操作的地址范围0x60000000到0xDFFFFFFF,具体的框图如下:

从上面的框图可以看出,NOR/PSRAM/SRAM块区有4个片选NE1,NE2,NE3和NE4,但由于引脚复用,部分片选对应的引脚要用于其他功能,而且要控制的总线外设较多,导致片选不够用。因此需要增加译码器。

48.2.2 第2步,增加译码器及其地址计算

有了前面的认识之后再来看下面的译码器电路:

SN74LVC1G139APWR是双2-4线地址译码器,也就是带了两个译码器。原理图上仅用了一个。下面是139的真值表和引脚功能:

通过上面的原理图和真值表就比较好理解了,真值表的输出是由片选FMC_NE1和地址线FMC_A10、FMC_A11控制。

FMC_NE1 输出低电平:

  •   FMC_A11(B),FMC_A10(A) = 00时,1Y0输出的低电平,选择的是OLED。
  •   FMC_A11(B),FMC_A10(A) = 01时,1Y1输出的低电平,选择的是74HC574。
  •   FMC_A11(B),FMC_A10(A) = 10时,1Y2输出的低电平,选择的是DM9000。
  •   FMC_A11(B),FMC_A10(A) = 11时,1Y3输出的低电平,选择的是AD7606。

然后我们再计算译码器的地址,注意,这里地址的计算都是按照FMC的32bit访问模式计算的,因为我们的V7程序中是将NE1对应的FMC配置为32bit模式了。

具体FMC的32bit访问模式,16bit访问模式和8bit访问模式的区别在第47章的2.4小节有详细讲解。

32bit模式下,我们计算A10和A11的时候,实际上需要按HADDR12和HADDR13计算的。

如果来算NE1 + HADDR12 + HADDR13的四种组合地址就是如下:

NE1 + HADDR13 + HADDR12 = 0x6000000 +  0<<13 + 0<<12 = 0x60000000

NE1 + HADDR13 + HADDR12 = 0x6000000 +  0<<13 + 1<<12 = 0x60001000

NE1 + HADDR13 + HADDR12 = 0x6000000 +  1<<13 + 0<<12 = 0x60002000

NE1 + HADDR13 + HADDR12 = 0x6000000 +  1<<13 + 1<<12 = 0x60003000

这样一来,原理图里面给的地址就对应上了。同理如果配置为16位模式和8位模式,大家应该也都会计算了。

48.2.3 第3步,FMC的IO扩展部分

先来看下IO扩展的原理图实现,如果不太了解FMC的通信时序和数字逻辑芯片的使用,可能会比较懵,下面逐一为大家说明。

有了这个原理图,首先要做的就是了解74HC574和SN74HC02的功能。

74HC574是一款8位三态D触发器,起到锁存的功能,上升沿触发,对应的真值表如下(L表示低电平,H表示高电平,Z表示高阻):

SN74HC02是一款2输入或非门,一个芯片带了四组或非门,对应的真值表如下(L表示低电平,H表示高电平):

有了这个认识后,我们再来看FMC的配置,V7开发板的BSP驱动包里面专门做了一个IO扩展的FMC配置,即文件bsp_fmc_io.c,配置方式是FMC_AccessMode_A,这种模式对应的写时序是:

那么问题来了,我们要实现的功能是通过FMC输出的数据要锁存在扩展IO的输出端,否则FMC时序信号消失了,扩展IO的输出数据也消失了,就起不到控制作用了。所以就用到74HC574的锁存功能,而锁存的实现需要一个上升沿触发,这个上升沿就是通过74HC02输出的。

再结合上面FMC写时序图,在NE片选为低电平,NWE写使能信号为高电平期间,即地址建立时间段ADDSET内,74HC02是输出的低电平。

进入到DATAST数据建立阶段,在NE片选为低电平,NWE写使能信号也为低电平时,74HC02输出高电平,正好是实现1个上升沿的变化,将数据总线上的数据锁存到74HC574的输出端了。这里隐含了一个知识点,数据还没有完全建立起来就锁存是不是会有问题。在下面的3.3小节配置具体时序参数时再为大家说明。

48.2.4 第4步,举例扩展IO驱动LED应用

进行到这里,再回过头来看LED驱动就比较好理解了。操作LED的亮灭就是操作FMC的数据引脚D8,D9,D10和D11。

对地址0x64001000发送数据就可以了,但是如何对这个地址发送数据呢? 反映到C语言的实现上就是通过固定地址的指针变量(跟我们操作寄存器是一样的),即

#define  HC574_PORT     *(uint32_t *)0x64001000

如果要点亮LED1(低电平点亮),就是 HC574_PORT = 0x0000 0000。

如果要熄灭LED1就是HC574_PORT = 0x0000 0100,即操作FMC_D8的高低电平即可。

48.3 FMC扩展IO驱动设计

下面将程序设计中的相关问题逐一为大家做个说明。

48.3.1 FMC扩展IO所涉及到的GPIO配置

这里仅需把用到的GPIO时钟、FMC时钟、GPIO引脚和复用配置好即可:

/*
*********************************************************************************************************
*    函 数 名: HC574_ConfigGPIO
*    功能说明: 配置GPIO,FMC管脚设置为复用功能
*    形    参:  无
*    返 回 值: 无
*********************************************************************************************************
*/
static void HC574_ConfigGPIO(void)
{
/*
    安富莱STM32-H7开发板接线方法:4片74HC574挂在FMC 32位总线上。1个地址端口可以扩展出32个IO
    PD0/FMC_D2
    PD1/FMC_D3
    PD4/FMC_NOE        ---- 读控制信号,OE = Output Enable , N 表示低有效
    PD5/FMC_NWE        -XX- 写控制信号,AD7606 只有读,无写信号
    PD8/FMC_D13
    PD9/FMC_D14
    PD10/FMC_D15
    PD14/FMC_D0
    PD15/FMC_D1

    PE7/FMC_D4
    PE8/FMC_D5
    PE9/FMC_D6
    PE10/FMC_D7
    PE11/FMC_D8
    PE12/FMC_D9
    PE13/FMC_D10
    PE14/FMC_D11
    PE15/FMC_D12
    
    PG0/FMC_A10        --- 和主片选FMC_NE2一起译码
    PG1/FMC_A11        --- 和主片选FMC_NE2一起译码
    XX --- PG9/FMC_NE2        --- 主片选(OLED, 74HC574, DM9000, AD7606)    
     --- PD7/FMC_NE1        --- 主片选(OLED, 74HC574, DM9000, AD7606)    
    
     +-------------------+------------------+
     +   32-bits Mode: D31-D16              +
     +-------------------+------------------+
     | PH8 <-> FMC_D16   | PI0 <-> FMC_D24  |
     | PH9 <-> FMC_D17   | PI1 <-> FMC_D25  |
     | PH10 <-> FMC_D18  | PI2 <-> FMC_D26  |
     | PH11 <-> FMC_D19  | PI3 <-> FMC_D27  |
     | PH12 <-> FMC_D20  | PI6 <-> FMC_D28  |
     | PH13 <-> FMC_D21  | PI7 <-> FMC_D29  |
     | PH14 <-> FMC_D22  | PI9 <-> FMC_D30  |
     | PH15 <-> FMC_D23  | PI10 <-> FMC_D31 |
     +------------------+-------------------+    
*/    

    GPIO_InitTypeDef gpio_init_structure;

    /* 使能 GPIO时钟 */
    __HAL_RCC_GPIOD_CLK_ENABLE();
    __HAL_RCC_GPIOE_CLK_ENABLE();
    __HAL_RCC_GPIOG_CLK_ENABLE();
    __HAL_RCC_GPIOH_CLK_ENABLE();
    __HAL_RCC_GPIOI_CLK_ENABLE();


    /* 使能FMC时钟 */
    __HAL_RCC_FMC_CLK_ENABLE();

    /* 设置 GPIOD 相关的IO为复用推挽输出 */
    gpio_init_structure.Mode = GPIO_MODE_AF_PP;
    gpio_init_structure.Pull = GPIO_PULLUP;
    gpio_init_structure.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
    gpio_init_structure.Alternate = GPIO_AF12_FMC;
    
    /* 配置GPIOD */
    gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_7 |
                                GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_14 |
                                GPIO_PIN_15;
    HAL_GPIO_Init(GPIOD, &gpio_init_structure);

    /* 配置GPIOE */
    gpio_init_structure.Pin = GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 |
                                GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 |
                                GPIO_PIN_15;
    HAL_GPIO_Init(GPIOE, &gpio_init_structure);

    /* 配置GPIOG */
    gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1;
    HAL_GPIO_Init(GPIOG, &gpio_init_structure);
    
    /* 配置GPIOH */
    gpio_init_structure.Pin = GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12
                        | GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15;
    HAL_GPIO_Init(GPIOH, &gpio_init_structure);

    /* 配置GPIOI */
    gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_6
                        | GPIO_PIN_7 | GPIO_PIN_9 | GPIO_PIN_10;
    HAL_GPIO_Init(GPIOI, &gpio_init_structure);
}

48.3.2 FMC扩展IO时钟源选择

使用FMC可以选择如下几种时钟源HCLK3,PLL1Q,PLL2R和PER_CK:

我们这里直接使用HCLK3,配置STM32H7的主频为400MHz的时候,HCLK3输出的200MHz,这个速度是FMC支持的最高时钟,正好用于这里:

48.3.3 时序配置(重要)

这里要补充两个重要的知识点,74HC574的CP端接收到上升沿触发到Qn输出的时间参数:

通过时序图和对应的参数要了解到以下几点:

  •   tpd传输延迟在这里等效于tPHL和tPLH。
  •   V7开发板的74HC574有三片是3.3V供电,另外一片是5V供电。参数表格里面没有给3.3V供电时的参数,也没有最小值。

了解了74HC574,再来看SN74HC02:

通过时序图和对应的参数要了解到以下几点:

  •   tpd传输延迟在这里等效于tPHL和tPLH。
  •   tt过渡时间等效于tr上升沿时间和tf下降沿时间。
  •   V7开发板的74HC574有两片是3.3V供电,另外两片是5V供电。参数表格里面没有给3.3V和5V供电时的参数,也没有最小值。

对应74HC574和74HC02的时序参数有个了解后,再来看本章2.3小节末尾的问题:

当写使能信号NWE出现下降沿后,74H02或非门就会输出一个上升沿,然后触发74HC574做锁存。此时我们要考虑到一个重要的知识点,就是使用的数字逻辑芯片有个传输延迟问题,也就是要我们要保证74HC02的tpd传输延迟时间 + 74HC02的tr传输延迟时间 + 74HC574的tpd传输延迟时间的这段时间内,数据总线上要有数据,所以保证DATAST数据建立时间够大就行。实际测试FMC频率在200MHz的情况下,2-3个FMC时钟周期就已经可以正常使用。

有了这些认识后,再来看FMC的时序配置就比较好理解了:

1.    /*
2.    ******************************************************************************************************
3.    *    函 数 名: HC574_ConfigFMC
4.    *    功能说明: 配置FMC并口访问时序
5.    *    形    参:  无
6.    *    返 回 值: 无
7.    ******************************************************************************************************
8.    */
9.    static void HC574_ConfigFMC(void)
10.    {
11.        SRAM_HandleTypeDef hsram = {0};
12.        FMC_NORSRAM_TimingTypeDef SRAM_Timing = {0};
13.            
14.        hsram.Instance  = FMC_NORSRAM_DEVICE;
15.        hsram.Extended  = FMC_NORSRAM_EXTENDED_DEVICE;
16.    
17.        /* FMC使用的HCLK3,主频200MHz,1个FMC时钟周期就是5ns */
18.        /* SRAM 总线时序配置 4-1-2-1-2-2 不稳定,5-2-2-1-2-2 稳定 */  
19.        SRAM_Timing.AddressSetupTime   = 5;  /* 5*5ns=25ns,地址建立时间,范围0 -15个FMC时钟周期个数 */
20.        SRAM_Timing.AddressHoldTime    = 2;  /* 地址保持时间,配置为模式A时,用不到此参数 范围1 -15个时
21.                                                  钟周期个数 */
22.        SRAM_Timing.DataSetupTime          = 2;  /* 2*5ns=10ns,数据保持时间,范围1 -255个时钟周期个数 */
23.        SRAM_Timing.BusTurnAroundDuration  = 1;  /* 此配置用不到这个参数 */
24.        SRAM_Timing.CLKDivision            = 2;  /* 此配置用不到这个参数 */
25.        SRAM_Timing.DataLatency            = 2;  /* 此配置用不到这个参数 */
26.        SRAM_Timing.AccessMode             = FMC_ACCESS_MODE_A; /* 配置为模式A */
27.    
28.        hsram.Init.NSBank             = FMC_NORSRAM_BANK1;   /* 使用的BANK1,即使用的片选FMC_NE1 */
29.        hsram.Init.DataAddressMux     = FMC_DATA_ADDRESS_MUX_DISABLE;   /* 禁止地址数据复用 */
30.        hsram.Init.MemoryType         = FMC_MEMORY_TYPE_SRAM;           /* 存储器类型SRAM */
31.        hsram.Init.MemoryDataWidth    = FMC_NORSRAM_MEM_BUS_WIDTH_32;    /* 32位总线宽度 */
32.        hsram.Init.BurstAccessMode    = FMC_BURST_ACCESS_MODE_DISABLE;  /* 关闭突发模式 */
33.        hsram.Init.WaitSignalPolarity = FMC_WAIT_SIGNAL_POLARITY_LOW;   /* 用于设置等待信号的极性,关闭突
34.                                                                            发模式,此参数无效 */
35.        hsram.Init.WaitSignalActive   = FMC_WAIT_TIMING_BEFORE_WS;      /* 关闭突发模式,此参数无效 */
36.        hsram.Init.WriteOperation     = FMC_WRITE_OPERATION_ENABLE;     /* 用于使能或者禁止写保护 */
37.        hsram.Init.WaitSignal         = FMC_WAIT_SIGNAL_DISABLE;        /* 关闭突发模式,此参数无效 */
38.        hsram.Init.ExtendedMode       = FMC_EXTENDED_MODE_DISABLE;      /* 禁止扩展模式 */
39.        hsram.Init.AsynchronousWait   = FMC_ASYNCHRONOUS_WAIT_DISABLE;  /* 用于异步传输期间,使能或者禁止
40.                                                                            等待信号,这里选择关闭 */
41.        hsram.Init.WriteBurst         = FMC_WRITE_BURST_DISABLE;        /* 禁止写突发 */
42.        hsram.Init.ContinuousClock    = FMC_CONTINUOUS_CLOCK_SYNC_ONLY; /* 仅同步模式才做时钟输出 */
43.        hsram.Init.WriteFifo          = FMC_WRITE_FIFO_ENABLE;           /* 使能写FIFO */
44.    
45.        /* 初始化SRAM控制器 */
46.        if (HAL_SRAM_Init(&hsram, &SRAM_Timing, &SRAM_Timing) != HAL_OK)
47.        {
48.            /* 初始化错误 */
49.            Error_Handler(__FILE__, __LINE__);
50.        }
51.    }

这里把几个关键的地方阐释下:

  •   第11 - 12行,对作为局部变量的HAL库结构体做初始化,防止不确定值配置时出问题。
  •   第19行,地址建立时间,对于FMC的IO扩展来说,这个地方取值0都可以,因为主要还是ADDST数据建立时间起作用。但是考虑到扩展IO外接了多个控制设备,这里取值5个FMC时钟周期,大家可以根据实际情况做减小出来。
  •   第20行,地址保持时间,对于FMC模式A来说,此参数用不到。
  •   第22行,数据建立时间,实际测试2个FMC时钟周期就可以正常使用,大家可以根据情况加大此数值。
  •   第23 – 25行,当前配置用不到这三个参数。
  •   第28行,使用的BANK1,即使用的片选FMC_NE1。
  •   第31行,由于是扩展的32路IO,所以这里要配置为32位带宽。

48.3.4 MPU配置

实际测试发现,使能FMC_NE1所管理的存储区的Cache功能后,会出现扩展IO的NE片选和NWE信号输出2次的问题。经过各种Cache方式配置、FMC带宽配置、操作FMC时的数据位宽设置,发现禁止了Cache功能就正常了,也就是说,设置FMC_NE1所管理的存储区MPU属性为Device或者Strongly Ordered即可。

    /* 配置FMC扩展IO的MPU属性为Device或者Strongly Ordered */
    MPU_InitStruct.Enable           = MPU_REGION_ENABLE;
    MPU_InitStruct.BaseAddress      = 0x60000000;
    MPU_InitStruct.Size             = ARM_MPU_REGION_SIZE_64KB;    
    MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
    MPU_InitStruct.IsBufferable     = MPU_ACCESS_BUFFERABLE;
    MPU_InitStruct.IsCacheable      = MPU_ACCESS_NOT_CACHEABLE;
    MPU_InitStruct.IsShareable      = MPU_ACCESS_NOT_SHAREABLE;
    MPU_InitStruct.Number           = MPU_REGION_NUMBER1;
    MPU_InitStruct.TypeExtField     = MPU_TEX_LEVEL0;
    MPU_InitStruct.SubRegionDisable = 0x00;
    MPU_InitStruct.DisableExec      = MPU_INSTRUCTION_ACCESS_ENABLE;
    
    HAL_MPU_ConfigRegion(&MPU_InitStruct);

MPU配置中直接从FMC_NE1的首地址开始配置,设置了64KB空间的属性。将FMC_NE1通过译码器所管理的所有设备地址全部设置为此配置:

48.3.5 操作数据位宽注意事项

在bsp_fmc_io.c文件开头有个宏定义#define  HC574_PORT  *(uint32_t *)0x60001000。特别注意,这里是要操作地址0x60001000上的32位数据空间,即做了一个强制转换uint32_t *,要跟FMC配置时设置的位宽一致。这样做的原因,在第47章的2.6小节有说明。

48.4 FMC扩展IO板级支持包(bsp_fmc_io.c)

驱动文件bsp_fmc_io.c提供了如下几个函数供用户调用:

  •   bsp_InitExtIO
  •   HC574_SetPin
  •   HC574_TogglePin
  •   HC574_GetPin

48.4.1 函数bsp_InitExtIO

函数原型:

/*
*********************************************************************************************************
*    函 数 名: bsp_InitExtIO
*    功能说明: 配置扩展IO相关的GPIO. 上电只能执行一次。
*    形    参: 无
*    返 回 值: 无
*********************************************************************************************************
*/
void bsp_InitExtIO(void)
{
    HC574_ConfigGPIO();
    HC574_ConfigFMC();
    
    /* 将开发板一些片选,LED口设置为高 */
    g_HC574 = (NRF24L01_CE | VS1053_XDCS | LED1 | LED2 | LED3 | LED4);
    HC574_PORT = g_HC574;    /* 写硬件端口,更改IO状态 */
}

函数描述:

此函数用于初始化FMC扩展IO所用到的GPIO和FMC的参数配置。

使用举例:

作为初始化函数,直接在在bsp.c文件的bsp_Init函数里面调用即可。

48.4.2 函数HC574_SetPin

函数原型:

/*
*********************************************************************************************************
*    函 数 名: HC574_SetPin
*    功能说明: 设置74HC574端口值
*    形    参: _pin : 管脚号, 0-31; 只能选1个,不能多选
*              _value : 设定的值,0或1
*    返 回 值: 无
*********************************************************************************************************
*/
void HC574_SetPin(uint32_t _pin, uint8_t _value)
{
    if (_value == 0)
    {
        g_HC574 &= (~_pin);
    }
    else
    {
        g_HC574 |= _pin;
    }
    HC574_PORT = g_HC574;
}

函数描述:

此函数用于设置扩展IO的输出状态。调用此函数前,要保证调用了函数bsp_InitExtIO进行了初始化。

函数参数:

  •   第1个参数是扩展IO的引脚,支持的形参如下,每次仅支持调用下面1个,不支持多个IO一起操作。
#define GPIO_PIN_0                 ((uint16_t)0x0001)  /* Pin 0 selected */
#define GPIO_PIN_1                 ((uint16_t)0x0002)  /* Pin 1 selected */
#define GPIO_PIN_2                 ((uint16_t)0x0004)  /* Pin 2 selected */
#define GPIO_PIN_3                 ((uint16_t)0x0008)  /* Pin 3 selected */
#define GPIO_PIN_4                 ((uint16_t)0x0010)  /* Pin 4 selected */
#define GPIO_PIN_5                 ((uint16_t)0x0020)  /* Pin 5 selected */
#define GPIO_PIN_6                 ((uint16_t)0x0040)  /* Pin 6 selected */
#define GPIO_PIN_7                 ((uint16_t)0x0080)  /* Pin 7 selected */
#define GPIO_PIN_8                 ((uint16_t)0x0100)  /* Pin 8 selected */
#define GPIO_PIN_9                 ((uint16_t)0x0200)  /* Pin 9 selected */
#define GPIO_PIN_10                ((uint16_t)0x0400)  /* Pin 10 selected */
#define GPIO_PIN_11                ((uint16_t)0x0800)  /* Pin 11 selected */
#define GPIO_PIN_12                ((uint16_t)0x1000)  /* Pin 12 selected */
#define GPIO_PIN_13                ((uint16_t)0x2000)  /* Pin 13 selected */
#define GPIO_PIN_14                ((uint16_t)0x4000)  /* Pin 14 selected */
#define GPIO_PIN_15                ((uint16_t)0x8000)  /* Pin 15 selected */
#define GPIO_PIN_16                ((uint32_t)0x00010000)  /* Pin 16 selected */
#define GPIO_PIN_17                ((uint32_t)0x00020000)  /* Pin 17 selected */
#define GPIO_PIN_18                ((uint32_t)0x00040000)  /* Pin 18 selected */
#define GPIO_PIN_19                ((uint32_t)0x00080000)  /* Pin 19 selected */
#define GPIO_PIN_20                ((uint32_t)0x00100000)  /* Pin 20 selected */
#define GPIO_PIN_21                ((uint32_t)0x00200000)  /* Pin 21 selected */
#define GPIO_PIN_22                ((uint32_t)0x00400000)  /* Pin 22 selected */
#define GPIO_PIN_23                ((uint32_t)0x00800000)  /* Pin 23 selected */
#define GPIO_PIN_24                ((uint32_t)0x01000000)  /* Pin 24 selected */
#define GPIO_PIN_25                ((uint32_t)0x02000000)  /* Pin 25 selected */
#define GPIO_PIN_26                ((uint32_t)0x04000000)  /* Pin 26 selected */
#define GPIO_PIN_27                ((uint32_t)0x08000000)  /* Pin 27 selected */
#define GPIO_PIN_28                ((uint32_t)0x10000000)  /* Pin 28 selected */
#define GPIO_PIN_29                ((uint32_t)0x20000000)  /* Pin 29 selected */
#define GPIO_PIN_30                ((uint32_t)0x40000000)  /* Pin 30 selected */
#define GPIO_PIN_31                ((uint32_t)0x80000000)  /* Pin 31 selected */
  •   第2个参数用于设置指定扩展IO的高低电平,0表示输出低电平,1表示输出高电平。

使用举例:

比如设置扩展IO引脚GPIO_PIN_23为高电平:HC574_SetPin(GPIO_PIN_23, 1)。

48.4.3 函数HC574_TogglePin

函数原型:

/*
*********************************************************************************************************
*    函 数 名: HC574_TogglePin
*    功能说明: 饭庄74HC574端口值
*    形    参: _pin : 管脚号, 0-31; 只能选1个,不能多选
*    返 回 值: 无
*********************************************************************************************************
*/
void HC574_TogglePin(uint32_t _pin)
{
    if (g_HC574 & _pin)
    {
        g_HC574 &= (~_pin);
    }
    else
    {
        g_HC574 |= _pin;
    }
    HC574_PORT = g_HC574;
}

函数描述:

此函数用于FMC扩展IO的翻转。调用此函数前,要保证调用了函数bsp_InitExtIO进行了初始化。

函数参数:

  •   第1个参数是扩展IO的引脚,支持的形参如下,每次仅支持调用下面1个,不支持多个IO一起操作。
#define GPIO_PIN_0                 ((uint16_t)0x0001)  /* Pin 0 selected */
#define GPIO_PIN_1                 ((uint16_t)0x0002)  /* Pin 1 selected */
#define GPIO_PIN_2                 ((uint16_t)0x0004)  /* Pin 2 selected */
#define GPIO_PIN_3                 ((uint16_t)0x0008)  /* Pin 3 selected */
#define GPIO_PIN_4                 ((uint16_t)0x0010)  /* Pin 4 selected */
#define GPIO_PIN_5                 ((uint16_t)0x0020)  /* Pin 5 selected */
#define GPIO_PIN_6                 ((uint16_t)0x0040)  /* Pin 6 selected */
#define GPIO_PIN_7                 ((uint16_t)0x0080)  /* Pin 7 selected */
#define GPIO_PIN_8                 ((uint16_t)0x0100)  /* Pin 8 selected */
#define GPIO_PIN_9                 ((uint16_t)0x0200)  /* Pin 9 selected */
#define GPIO_PIN_10                ((uint16_t)0x0400)  /* Pin 10 selected */
#define GPIO_PIN_11                ((uint16_t)0x0800)  /* Pin 11 selected */
#define GPIO_PIN_12                ((uint16_t)0x1000)  /* Pin 12 selected */
#define GPIO_PIN_13                ((uint16_t)0x2000)  /* Pin 13 selected */
#define GPIO_PIN_14                ((uint16_t)0x4000)  /* Pin 14 selected */
#define GPIO_PIN_15                ((uint16_t)0x8000)  /* Pin 15 selected */
#define GPIO_PIN_16                ((uint32_t)0x00010000)  /* Pin 16 selected */
#define GPIO_PIN_17                ((uint32_t)0x00020000)  /* Pin 17 selected */
#define GPIO_PIN_18                ((uint32_t)0x00040000)  /* Pin 18 selected */
#define GPIO_PIN_19                ((uint32_t)0x00080000)  /* Pin 19 selected */
#define GPIO_PIN_20                ((uint32_t)0x00100000)  /* Pin 20 selected */
#define GPIO_PIN_21                ((uint32_t)0x00200000)  /* Pin 21 selected */
#define GPIO_PIN_22                ((uint32_t)0x00400000)  /* Pin 22 selected */
#define GPIO_PIN_23                ((uint32_t)0x00800000)  /* Pin 23 selected */
#define GPIO_PIN_24                ((uint32_t)0x01000000)  /* Pin 24 selected */
#define GPIO_PIN_25                ((uint32_t)0x02000000)  /* Pin 25 selected */
#define GPIO_PIN_26                ((uint32_t)0x04000000)  /* Pin 26 selected */
#define GPIO_PIN_27                ((uint32_t)0x08000000)  /* Pin 27 selected */
#define GPIO_PIN_28                ((uint32_t)0x10000000)  /* Pin 28 selected */
#define GPIO_PIN_29                ((uint32_t)0x20000000)  /* Pin 29 selected */
#define GPIO_PIN_30                ((uint32_t)0x40000000)  /* Pin 30 selected */
#define GPIO_PIN_31                ((uint32_t)0x80000000)  /* Pin 31 selected */

使用举例:

比如翻转扩展IO引脚GPIO_PIN_23为高电平:HC574_TogglePin(GPIO_PIN_23)。

48.4.4 函数HC574_GetPin

函数原型:

/*
*********************************************************************************************************
*    函 数 名: HC574_GetPin
*    功能说明: 判断指定的管脚输出是1还是0
*    形    参: _pin : 管脚号, 0-31; 只能选1个,不能多选
*    返 回 值: 0或1
*********************************************************************************************************
*/
uint8_t HC574_GetPin(uint32_t _pin)
{
    if (g_HC574 & _pin)
    {
        return 1;
    }
    else
    {
        return 0;
    }
}

函数描述:

此函数用于读取FMC扩展IO的状态。调用此函数前,要保证调用了函数bsp_InitExtIO进行了初始化。

函数参数:

  •   第1个参数是扩展IO的引脚,支持的形参如下,每次仅支持调用下面1个,不支持多个IO一起操作。
#define GPIO_PIN_0                 ((uint16_t)0x0001)  /* Pin 0 selected */
#define GPIO_PIN_1                 ((uint16_t)0x0002)  /* Pin 1 selected */
#define GPIO_PIN_2                 ((uint16_t)0x0004)  /* Pin 2 selected */
#define GPIO_PIN_3                 ((uint16_t)0x0008)  /* Pin 3 selected */
#define GPIO_PIN_4                 ((uint16_t)0x0010)  /* Pin 4 selected */
#define GPIO_PIN_5                 ((uint16_t)0x0020)  /* Pin 5 selected */
#define GPIO_PIN_6                 ((uint16_t)0x0040)  /* Pin 6 selected */
#define GPIO_PIN_7                 ((uint16_t)0x0080)  /* Pin 7 selected */
#define GPIO_PIN_8                 ((uint16_t)0x0100)  /* Pin 8 selected */
#define GPIO_PIN_9                 ((uint16_t)0x0200)  /* Pin 9 selected */
#define GPIO_PIN_10                ((uint16_t)0x0400)  /* Pin 10 selected */
#define GPIO_PIN_11                ((uint16_t)0x0800)  /* Pin 11 selected */
#define GPIO_PIN_12                ((uint16_t)0x1000)  /* Pin 12 selected */
#define GPIO_PIN_13                ((uint16_t)0x2000)  /* Pin 13 selected */
#define GPIO_PIN_14                ((uint16_t)0x4000)  /* Pin 14 selected */
#define GPIO_PIN_15                ((uint16_t)0x8000)  /* Pin 15 selected */
#define GPIO_PIN_16                ((uint32_t)0x00010000)  /* Pin 16 selected */
#define GPIO_PIN_17                ((uint32_t)0x00020000)  /* Pin 17 selected */
#define GPIO_PIN_18                ((uint32_t)0x00040000)  /* Pin 18 selected */
#define GPIO_PIN_19                ((uint32_t)0x00080000)  /* Pin 19 selected */
#define GPIO_PIN_20                ((uint32_t)0x00100000)  /* Pin 20 selected */
#define GPIO_PIN_21                ((uint32_t)0x00200000)  /* Pin 21 selected */
#define GPIO_PIN_22                ((uint32_t)0x00400000)  /* Pin 22 selected */
#define GPIO_PIN_23                ((uint32_t)0x00800000)  /* Pin 23 selected */
#define GPIO_PIN_24                ((uint32_t)0x01000000)  /* Pin 24 selected */
#define GPIO_PIN_25                ((uint32_t)0x02000000)  /* Pin 25 selected */
#define GPIO_PIN_26                ((uint32_t)0x04000000)  /* Pin 26 selected */
#define GPIO_PIN_27                ((uint32_t)0x08000000)  /* Pin 27 selected */
#define GPIO_PIN_28                ((uint32_t)0x10000000)  /* Pin 28 selected */
#define GPIO_PIN_29                ((uint32_t)0x20000000)  /* Pin 29 selected */
#define GPIO_PIN_30                ((uint32_t)0x40000000)  /* Pin 30 selected */
#define GPIO_PIN_31                ((uint32_t)0x80000000)  /* Pin 31 selected */
  •   返回值,返回0表示低电平,返回1表示高电平。

使用举例:

比如获取扩展IO的GPIO_PIN_23高低电平状态,调用函数HC574_GetPin(GPIO_PIN_23)获取即可。

48.5 FMC扩展IO驱动移植和使用

扩展IO的移植比较方便:

  •   第1步:复制bsp_fmc_io.c和bsp_fmc_io.h到自己的工程目录,并添加到工程里面。
  •   第2步:这几个驱动文件主要用到HAL库的GPIO和FMC驱动文件,简单省事些可以添加所有HAL库.C源文件进来。
  •   第3步,应用方法看本章节配套例子即可,另外就是根据自己的需要做配置修改。

48.6 实验例程设计框架

通过程序设计框架,让大家先对配套例程有一个全面的认识,然后再理解细节,本次实验例程的设计框架如下:

  第1阶段,上电启动阶段:

  • 这部分在第14章进行了详细说明。

  第2阶段,进入main函数:

  •  第1步,硬件初始化,主要是MPU,Cache,HAL库,系统时钟,滴答定时器,LED和串口。
  •  第2步,按键应用程序设计部分。定时器中断服务程序里面实现翻转FMC扩展引脚20和23。

48.7 实验例程说明(MDK)

配套例子:

V7-027-FMC总线扩展32路高速IO

实验目的:

  1. 学习FMC总线扩展32路高速IO。

实验内容:

  1. 系统上电后驱动了1个软件定时器,每100ms翻转一次LED2。
  2. 启动1个TIM6周期性中断,频率10KHz,在中断服务程序里面翻转FMC扩展引脚20和23。

实验操作:

  1. K1按键按下,开启TIM6的周期性中断。
  2. K2按键按下,关闭TIM6的周期性中断。

FMC扩展引脚20和23的位置:

上电后串口打印的信息:

波特率 115200,数据位 8,奇偶校验位无,停止位 1

程序设计:

系统栈大小分配:

RAM空间用的DTCM:

硬件外设初始化

硬件外设的初始化是在 bsp.c 文件实现:

/*
*********************************************************************************************************
*    函 数 名: bsp_Init
*    功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次
*    形    参:无
*    返 回 值: 无
*********************************************************************************************************
*/
void bsp_Init(void)
{
    /* 配置MPU */
    MPU_Config();
    
    /* 使能L1 Cache */
    CPU_CACHE_Enable();

    /* 
       STM32H7xx HAL 库初始化,此时系统用的还是H7自带的64MHz,HSI时钟:
       - 调用函数HAL_InitTick,初始化滴答时钟中断1ms。
       - 设置NVIV优先级分组为4。
     */
    HAL_Init();

    /* 
       配置系统时钟到400MHz
       - 切换使用HSE。
       - 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。
    */
    SystemClock_Config();

    /* 
       Event Recorder:
       - 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。
       - 默认不开启,如果要使能此选项,务必看V7开发板用户手册第xx章
    */    
#if Enable_EventRecorder == 1  
    /* 初始化EventRecorder并开启 */
    EventRecorderInitialize(EventRecordAll, 1U);
    EventRecorderStart();
#endif
    
    bsp_InitKey();        /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */
    bsp_InitTimer();      /* 初始化滴答定时器 */
    bsp_InitUart();    /* 初始化串口 */
    bsp_InitExtIO();    /* 初始化FMC总线74HC574扩展IO. 必须在 bsp_InitLed()前执行 */    
    bsp_InitLed();        /* 初始化LED */    
}

MPU配置和Cache配置:

数据Cache和指令Cache都开启。配置了AXI SRAM区(本例子未用到AXI SRAM)和FMC的扩展IO区。

/*
*********************************************************************************************************
*    函 数 名: MPU_Config
*    功能说明: 配置MPU
*    形    参: 无
*    返 回 值: 无
*********************************************************************************************************
*/
static void MPU_Config( void )
{
    MPU_Region_InitTypeDef MPU_InitStruct;

    /* 禁止 MPU */
    HAL_MPU_Disable();

    /* 配置AXI SRAM的MPU属性为Write back, Read allocate,Write allocate */
    MPU_InitStruct.Enable           = MPU_REGION_ENABLE;
    MPU_InitStruct.BaseAddress      = 0x24000000;
    MPU_InitStruct.Size             = MPU_REGION_SIZE_512KB;
    MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
    MPU_InitStruct.IsBufferable     = MPU_ACCESS_BUFFERABLE;
    MPU_InitStruct.IsCacheable      = MPU_ACCESS_CACHEABLE;
    MPU_InitStruct.IsShareable      = MPU_ACCESS_NOT_SHAREABLE;
    MPU_InitStruct.Number           = MPU_REGION_NUMBER0;
    MPU_InitStruct.TypeExtField     = MPU_TEX_LEVEL1;
    MPU_InitStruct.SubRegionDisable = 0x00;
    MPU_InitStruct.DisableExec      = MPU_INSTRUCTION_ACCESS_ENABLE;

    HAL_MPU_ConfigRegion(&MPU_InitStruct);
    
    
    /* 配置FMC扩展IO的MPU属性为Device或者Strongly Ordered */
    MPU_InitStruct.Enable           = MPU_REGION_ENABLE;
    MPU_InitStruct.BaseAddress      = 0x60000000;
    MPU_InitStruct.Size             = ARM_MPU_REGION_SIZE_64KB;    
    MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
    MPU_InitStruct.IsBufferable     = MPU_ACCESS_BUFFERABLE;
    MPU_InitStruct.IsCacheable      = MPU_ACCESS_NOT_CACHEABLE;    
    MPU_InitStruct.IsShareable      = MPU_ACCESS_NOT_SHAREABLE;
    MPU_InitStruct.Number           = MPU_REGION_NUMBER1;
    MPU_InitStruct.TypeExtField     = MPU_TEX_LEVEL0;
    MPU_InitStruct.SubRegionDisable = 0x00;
    MPU_InitStruct.DisableExec      = MPU_INSTRUCTION_ACCESS_ENABLE;
    
    HAL_MPU_ConfigRegion(&MPU_InitStruct);

    /*使能 MPU */
    HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);
}

/*
*********************************************************************************************************
*    函 数 名: CPU_CACHE_Enable
*    功能说明: 使能L1 Cache
*    形    参: 无
*    返 回 值: 无
*********************************************************************************************************
*/
static void CPU_CACHE_Enable(void)
{
    /* 使能 I-Cache */
    SCB_EnableICache();

    /* 使能 D-Cache */
    SCB_EnableDCache();
}

主功能:

主程序实现如下操作:

  •   K1按键按下,开启TIM6的周期性中断。
  •  K2按键按下,关闭TIM6的周期性中断。
/*
*********************************************************************************************************
*    函 数 名: main
*    功能说明: c程序入口
*    形    参: 无
*    返 回 值: 错误代码(无需处理)
*********************************************************************************************************
*/
int main(void)
{
    uint8_t ucKeyCode;        /* 按键代码 */
    

    bsp_Init();        /* 硬件初始化 */
    
    PrintfLogo();    /* 打印例程名称和版本等信息 */
    PrintfHelp();    /* 打印操作提示 */

    bsp_StartAutoTimer(0, 100);    /* 启动1个100ms的自动重装的定时器 */
    
    bsp_SetTIMforInt(TIM6, 10000, 2, 0);    /* 设置为10KHz频率定时器中断*/    
    
    /* 进入主程序循环体 */
    while (1)
    {
        bsp_Idle();        /* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 */

        /* 判断定时器超时时间 */
        if (bsp_CheckTimer(0))    
        {
            /* 每隔100ms 进来一次 */  
            bsp_LedToggle(2);
        }

        /* 按键滤波和检测由后台systick中断服务程序实现,我们只需要调用bsp_GetKey读取键值即可。 */
        ucKeyCode = bsp_GetKey();    /* 读取键值, 无键按下时返回 KEY_NONE = 0 */
        if (ucKeyCode != KEY_NONE)
        {
            switch (ucKeyCode)
            {
                case KEY_DOWN_K1:            /* K1键按下,开启TIM6的周期性中断*/
                    TIM6->DIER |= TIM_IT_UPDATE;
                    break;

                case KEY_DOWN_K2:            /* K2键按下,关闭TIM6的周期性中断*/
                    TIM6->DIER &= ~TIM_IT_UPDATE;
                    break;

                default:
                    /* 其它的键值不处理 */
                    break;
            }
        }
    }
}

定时器6中断服务程序:

/*
*********************************************************************************************************
*    函 数 名: TIM6_DAC_IRQHandler
*    功能说明: TIM6定时中断服务程序
*    返 回 值: 无
*********************************************************************************************************
*/
void TIM6_DAC_IRQHandler(void)
{
    if((TIM6->SR & TIM_FLAG_UPDATE) != RESET)
    {
        /* 清除更新标志 */
        TIM6->SR = ~ TIM_FLAG_UPDATE;
        
        /* 翻转FMC扩展引脚20和23脚 */
        HC574_TogglePin(GPIO_PIN_23);
        HC574_TogglePin(GPIO_PIN_20);
    }
}

48.8 实验例程说明(IAR)

配套例子:

V7-027-FMC总线扩展32路高速IO

实验目的:

  1. 学习FMC总线扩展32路高速IO。

实验内容:

  1. 系统上电后驱动了1个软件定时器,每100ms翻转一次LED2。
  2. 启动1个TIM6周期性中断,频率10KHz,在中断服务程序里面翻转FMC扩展引脚20和23。

实验操作:

  1. K1按键按下,开启TIM6的周期性中断。
  2. K2按键按下,关闭TIM6的周期性中断。

FMC扩展引脚20和23的位置:

上电后串口打印的信息:

波特率 115200,数据位 8,奇偶校验位无,停止位 1

程序设计:

系统栈大小分配:

RAM空间用的DTCM:

硬件外设初始化

硬件外设的初始化是在 bsp.c 文件实现:

/*
*********************************************************************************************************
*    函 数 名: bsp_Init
*    功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次
*    形    参:无
*    返 回 值: 无
*********************************************************************************************************
*/
void bsp_Init(void)
{
    /* 配置MPU */
    MPU_Config();
    
    /* 使能L1 Cache */
    CPU_CACHE_Enable();

    /* 
       STM32H7xx HAL 库初始化,此时系统用的还是H7自带的64MHz,HSI时钟:
       - 调用函数HAL_InitTick,初始化滴答时钟中断1ms。
       - 设置NVIV优先级分组为4。
     */
    HAL_Init();

    /* 
       配置系统时钟到400MHz
       - 切换使用HSE。
       - 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。
    */
    SystemClock_Config();

    /* 
       Event Recorder:
       - 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。
       - 默认不开启,如果要使能此选项,务必看V7开发板用户手册第xx章
    */    
#if Enable_EventRecorder == 1  
    /* 初始化EventRecorder并开启 */
    EventRecorderInitialize(EventRecordAll, 1U);
    EventRecorderStart();
#endif
    
    bsp_InitKey();        /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */
    bsp_InitTimer();      /* 初始化滴答定时器 */
    bsp_InitUart();    /* 初始化串口 */
    bsp_InitExtIO();    /* 初始化FMC总线74HC574扩展IO. 必须在 bsp_InitLed()前执行 */    
    bsp_InitLed();        /* 初始化LED */    
}

MPU配置和Cache配置:

数据Cache和指令Cache都开启。配置了AXI SRAM区(本例子未用到AXI SRAM)和FMC的扩展IO区。

/*
*********************************************************************************************************
*    函 数 名: MPU_Config
*    功能说明: 配置MPU
*    形    参: 无
*    返 回 值: 无
*********************************************************************************************************
*/
static void MPU_Config( void )
{
    MPU_Region_InitTypeDef MPU_InitStruct;

    /* 禁止 MPU */
    HAL_MPU_Disable();

    /* 配置AXI SRAM的MPU属性为Write back, Read allocate,Write allocate */
    MPU_InitStruct.Enable           = MPU_REGION_ENABLE;
    MPU_InitStruct.BaseAddress      = 0x24000000;
    MPU_InitStruct.Size             = MPU_REGION_SIZE_512KB;
    MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
    MPU_InitStruct.IsBufferable     = MPU_ACCESS_BUFFERABLE;
    MPU_InitStruct.IsCacheable      = MPU_ACCESS_CACHEABLE;
    MPU_InitStruct.IsShareable      = MPU_ACCESS_NOT_SHAREABLE;
    MPU_InitStruct.Number           = MPU_REGION_NUMBER0;
    MPU_InitStruct.TypeExtField     = MPU_TEX_LEVEL1;
    MPU_InitStruct.SubRegionDisable = 0x00;
    MPU_InitStruct.DisableExec      = MPU_INSTRUCTION_ACCESS_ENABLE;

    HAL_MPU_ConfigRegion(&MPU_InitStruct);
    
    
    /* 配置FMC扩展IO的MPU属性为Device或者Strongly Ordered */
    MPU_InitStruct.Enable           = MPU_REGION_ENABLE;
    MPU_InitStruct.BaseAddress      = 0x60000000;
    MPU_InitStruct.Size             = ARM_MPU_REGION_SIZE_64KB;    
    MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
    MPU_InitStruct.IsBufferable     = MPU_ACCESS_BUFFERABLE;
    MPU_InitStruct.IsCacheable      = MPU_ACCESS_NOT_CACHEABLE;    
    MPU_InitStruct.IsShareable      = MPU_ACCESS_NOT_SHAREABLE;
    MPU_InitStruct.Number           = MPU_REGION_NUMBER1;
    MPU_InitStruct.TypeExtField     = MPU_TEX_LEVEL0;
    MPU_InitStruct.SubRegionDisable = 0x00;
    MPU_InitStruct.DisableExec      = MPU_INSTRUCTION_ACCESS_ENABLE;
    
    HAL_MPU_ConfigRegion(&MPU_InitStruct);

    /*使能 MPU */
    HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);
}

/*
*********************************************************************************************************
*    函 数 名: CPU_CACHE_Enable
*    功能说明: 使能L1 Cache
*    形    参: 无
*    返 回 值: 无
*********************************************************************************************************
*/
static void CPU_CACHE_Enable(void)
{
    /* 使能 I-Cache */
    SCB_EnableICache();

    /* 使能 D-Cache */
    SCB_EnableDCache();
}

主功能:

主程序实现如下操作:

  •  K1按键按下,开启TIM6的周期性中断。
  •  K2按键按下,关闭TIM6的周期性中断。
/*
*********************************************************************************************************
*    函 数 名: main
*    功能说明: c程序入口
*    形    参: 无
*    返 回 值: 错误代码(无需处理)
*********************************************************************************************************
*/
int main(void)
{
    uint8_t ucKeyCode;        /* 按键代码 */
    

    bsp_Init();        /* 硬件初始化 */
    
    PrintfLogo();    /* 打印例程名称和版本等信息 */
    PrintfHelp();    /* 打印操作提示 */

    bsp_StartAutoTimer(0, 100);    /* 启动1个100ms的自动重装的定时器 */
    
    bsp_SetTIMforInt(TIM6, 10000, 2, 0);    /* 设置为10KHz频率定时器中断*/    
    
    /* 进入主程序循环体 */
    while (1)
    {
        bsp_Idle();        /* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 */

        /* 判断定时器超时时间 */
        if (bsp_CheckTimer(0))    
        {
            /* 每隔100ms 进来一次 */  
            bsp_LedToggle(2);
        }

        /* 按键滤波和检测由后台systick中断服务程序实现,我们只需要调用bsp_GetKey读取键值即可。 */
        ucKeyCode = bsp_GetKey();    /* 读取键值, 无键按下时返回 KEY_NONE = 0 */
        if (ucKeyCode != KEY_NONE)
        {
            switch (ucKeyCode)
            {
                case KEY_DOWN_K1:            /* K1键按下,开启TIM6的周期性中断*/
                    TIM6->DIER |= TIM_IT_UPDATE;
                    break;

                case KEY_DOWN_K2:            /* K2键按下,关闭TIM6的周期性中断*/
                    TIM6->DIER &= ~TIM_IT_UPDATE;
                    break;

                default:
                    /* 其它的键值不处理 */
                    break;
            }
        }
    }
}

定时器6中断服务程序:

/*
*********************************************************************************************************
*    函 数 名: TIM6_DAC_IRQHandler
*    功能说明: TIM6定时中断服务程序
*    返 回 值: 无
*********************************************************************************************************
*/
void TIM6_DAC_IRQHandler(void)
{
    if((TIM6->SR & TIM_FLAG_UPDATE) != RESET)
    {
        /* 清除更新标志 */
        TIM6->SR = ~ TIM_FLAG_UPDATE;
        
        /* 翻转FMC扩展引脚20和23脚 */
        HC574_TogglePin(GPIO_PIN_23);
        HC574_TogglePin(GPIO_PIN_20);
    }
}

48.9 总结

本章节就为大家讲解这么多,由于FMC总线可以扩展出32路高速IO且使用简单,所以实际项目中也比较有实用价值,望初学者熟练掌握。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2020-02-05 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 第48章       STM32H7的FMC总线应用之是32路高速IO扩展
    • 48.1 初学者重要提示
      • 48.2 FMC扩展IO硬件设计
        • 48.2.1 第1步,先来看FMC的块区分配
        • 48.2.2 第2步,增加译码器及其地址计算
        • 48.2.3 第3步,FMC的IO扩展部分
        • 48.2.4 第4步,举例扩展IO驱动LED应用
      • 48.3 FMC扩展IO驱动设计
        • 48.3.1 FMC扩展IO所涉及到的GPIO配置
        • 48.3.2 FMC扩展IO时钟源选择
        • 48.3.3 时序配置(重要)
        • 48.3.4 MPU配置
        • 48.3.5 操作数据位宽注意事项
      • 48.4 FMC扩展IO板级支持包(bsp_fmc_io.c)
        • 48.4.1 函数bsp_InitExtIO
        • 48.4.2 函数HC574_SetPin
        • 48.4.3 函数HC574_TogglePin
        • 48.4.4 函数HC574_GetPin
      • 48.5 FMC扩展IO驱动移植和使用
        • 48.6 实验例程设计框架
          • 48.7 实验例程说明(MDK)
            • 48.8 实验例程说明(IAR)
              • 48.9 总结
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档