专栏首页数据分析1480数据可视化的基本流程总结

数据可视化的基本流程总结

温馨提示

小伙伴们尽量减少外出,为了个人健康出门请佩戴口罩,日常勤洗手,远离生禽

我们要的不是数据,而是数据告诉我们的事实。大多数人面临这样一个挑战:我们认识到数据可视化的必要性,但缺乏数据可视化方面的专业技能。部分原因可以归结于,数据可视化只是数据分析过程中的一个环节,数据分析师可能将精力花在获取数据、清洗整理数据、分析数据、建立模型,但在最终的展示沟通上力不从心。

这也是“写代码的干不过做PPT”的部分原因。实际上,只要掌握了可视化的技能,我们的工作就更容易受到leader的认可。

可视化工具包括但不限于,Tableau,Excel,PowerBI,Python,R

可视化之前:探索性分析与解释性分析

二者之间有很重要的区别:探索性分析指理解数据并找出值得分析或分享给他人的精华。这就好比,在牡蛎中寻找珍珠,可能打开一百个牡蛎(尝试很多种方法)才最终找到两颗珍珠。而解释性分析,我们迫切希望能够言之有物,讲好某个故事--专注于两颗珍珠。

大多数时候我们汇报工作就是要做好解释性分析的工作。

可视化过程

一个完整的数据可视化过程,主要包括以下4个步骤:

确定数据可视化的主题 提炼可视化主题的数据 根据数据关系确定图表 进行可视化布局及设计

图片来自:木东居士

可视化元素由3部分组成:可视化空间+标记+视觉通道

可视化空间

数据可视化的显示空间,通常是二维。三维物体的可视化,通过图形绘制技术,解决了在二维平面显示的问题,如3D环形图、3D地图等。

标记

标记,是数据属性到可视化几何图形元素的映射,用来代表数据属性的归类。

根据空间自由度的差别,标记可以分为点、线、面、体,分别具有零自由度、一维、二维、三维自由度。如我们常见的散点图、折线图、矩形树图、三维柱状图,分别采用了点、线、面、体这四种不同类型的标记。

视觉通道

数据属性的值到标记的视觉呈现参数的映射,叫做视觉通道,通常用于展示数据属性的定量信息。

常用的视觉通道包括:标记的位置、大小(长度、面积、体积...)、形状(三角形、圆、立方体...)、方向、颜色(色调、饱和度、亮度、透明度...)等。

确定图表

数据之间的相互关系,决定了可采用的图表类型。常见的数据关系和图表类型的对应关系如下图所示:

图片来自:木东居士

在以后的专栏中,我们将逐步分享上述图片中出现的各图形应用案例及注意事项。接下来,我们结合具体案例来讲述数据可视化的魅力

表格

使用表格时,需要记住的一点是:让设计融入背景,让数据占据核心地位。不要让厚重的边框和阴影与数据争夺受众的注意力。相反,要使用空格来区分表格中的元素。

左表,框线过多容易扰乱阅读者的注意力,反之,三线表简洁干练,通常是论文及出版物表格样式的首选。

热力图

热力图是用表格的形式可视化数据的一种方法,在显示数据的地方(数据之外)利用着色的单元格传递数据相对大小的信息。

热力图绘制(excel2010版):选中数据--开始--样式--条件格式(你可以根据需要选择合适的条件格式)。

折线图

我们通常可以借助折现图理解趋势,比如,时间序列的每年降雨量(每日将与量之和);在某些情况下,折线图中的线可能代表一个综合的统计数据,比如平均值或预测的点估计。如果你还想展示范围(或者置信区间),可以直接在图上进行可视化。

源数据:

左图是多指标折线图,右图在折线图中展示范围内的平均值。

绘制右图时:先绘制avg--max折线图,然后右键“更改图表类型”,选择“面积图”;

右键“选择数据”,添加min折线图;最后选中“min折现图”,右键“设置数据系列格式”,选择“纯色填充--白色”。

本文分享自微信公众号 - 数据分析1480(lsxxx2011)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2020-01-28

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 分享一份高质量的数据可视化作品指南

    许多数据可视化工作者都提到一件事,就是开发可视化作品变得更简单了,但是效果难以评估。本文翻译自toptal的博文,让我们来看看优秀的可视化实践是如何实现的吧。

    1480
  • 教你如何灵活地用数据驱动的方式讲故事

    首先,你有思考过一个问题吗?当你的直觉与你所掌握的数据矛盾的时候,你是听从于直觉还是相信你所掌握的数据呢?2016年的一项调查发现,90%的决策者会更偏向听从自...

    1480
  • 这里总结了几十种可视化图表供你参考

    https://datavizcatalogue.com/ZH/这个网站总结了常见的可视化图表类型,不仅按功能进行了分类,还对每种图表的制作过程及适用场景进行了...

    1480
  • 基于数字孪生的IBV智能建筑可视化系统

      智能建筑可视化管理就是我们经常说的IBV, 智能建筑大家应该都是能理解的,如何使其可视化是我们本文的重点。划重点时间到了!智能建筑可视化系统基于数字孪生的三...

    要不要吃火锅
  • 惊艳全球数据行业的16个数据可视化例子(投票译文)

    作者:Ross Crooks | @rtcrooks ? 数据是非常强大的。当然,如果你能真正理解它想告诉你的内容,那它的强大之处就更能体现出来了。 通过观察数...

    小莹莹
  • 除了传统图文报道,数据可视化如何让我们看到的新闻“活”起来

    导语| 随着新冠疫情的发展,各个新闻资讯平台及自媒体在疫情的报道上,都在尝试除传统图文报道外的其他形式,以求基于大数据和新技术,能够更加全方位的、详实的、清...

    腾讯大讲堂
  • 大数据可视化系列1: 可视化周期表

    大数据文摘
  • 实时可视化 Debug:VS Code 开源新工具,一键解析代码结构

    有没有一种更优雅的 DeBug 方式,以更简洁的信息快速帮我们找到代码的问题所在?

    用户2769421
  • Python可视化工具概览

    在互联网时代,每时每刻都在产生大量的数据。而气象领域更是一个“大数据”领域。除地面观测站之外,在轨卫星每年也会产生PB级气象数据,还有大量的数值模式数据。

    zhangqibot
  • 数字世界需要可视化

    在黑客帝国中,一边是物理世界,一边是母体的数字世界,数字世界由海量的1和0构成,只是0与1构成的世界对于大部分人来说过于复杂,最终只有救世主尼奥能够看清:

    彭华盛

扫码关注云+社区

领取腾讯云代金券