专栏首页用户画像推荐 :如何正确选择聚类算法?

推荐 :如何正确选择聚类算法?

聚类算法十分容易上手,但是选择恰当的聚类算法并不是一件容易的事。

数据聚类是搭建一个正确数据模型的重要步骤。数据分析应当根据数据的共同点整理信息。然而主要问题是,什么通用性参数可以给出最佳结果,以及什么才能称为“最佳”。

本文适用于菜鸟数据科学家或想提升聚类算法能力的专家。下文包括最广泛使用的聚类算法及其概况。根据每种方法的特殊性,本文针对其应用提出了建议。

四种基本算法以及如何选择

聚类模型可以分为四种常见的算法类别。尽管零零散散的聚类算法不少于100种,但是其中大部分的流行程度以及应用领域相对有限。

基于整个数据集对象间距离计算的聚类方法,称为基于连通性的聚类(connectivity-based)或层次聚类。根据算法的“方向”,它可以组合或反过来分解信息——聚集和分解的名称正是源于这种方向的区别。最流行和合理的类型是聚集型,你可以从输入所有数据开始,然后将这些数据点组合成越来越大的簇,直到达到极限。

层次聚类的一个典型案例是植物的分类。数据集的“树”从具体物种开始,以一些植物王国结束,每个植物王国都由更小的簇组成(门、类、阶等)。

层次聚类算法将返回树状图数据,该树状图展示了信息的结构,而不是集群上的具体分类。这样的特点既有好处,也有一些问题:算法会变得很复杂,且不适用于几乎没有层次的数据集。这种算法的性能也较差:由于存在大量的迭代,因此整个处理过程浪费了很多不必要的时间。最重要的是,这种分层算法并不能得到精确的结构。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • k-means算法

    K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。其中K值是目标聚类个数。

    week
  • 等价类方法和边界值分析方法

    NextDate是一个有三个变量(月份、日期和年)的函数。函数返回输入日期后面的那个日期。变量月份、日期和年都是整数值,并满足以下条件:

    week
  • 数据科学研究的现状与趋势全解

    大数据时代的到来催生了一门新的学科——数据科学。首先,本文探讨了数据科学的内涵、发展简史、学科地位及知识体系等基本问题,并提出了专业数据科学与专业中的数据科学之...

    week
  • 四种聚类方法之比较

    聚类分析是一种重要的人类行为,早在孩提时代,一个人就通过不断改进下意识中的聚类模式来学会如何区分猫狗、动物植物。目前在许多领域都得到了广泛的研究和成功的应用,如...

    统计学家
  • 如何正确选择聚类算法? | CSDN博文精选

    本文将介绍四种基本的聚类算法—层次聚类、基于质心的聚类、最大期望算法和基于密度的聚类算法,并讨论不同算法的优缺点。

    AI科技大本营
  • 如何正确选择聚类算法?

    数据聚类是搭建一个正确数据模型的重要步骤。数据分析应当根据数据的共同点整理信息。然而主要问题是,什么通用性参数可以给出最佳结果,以及什么才能称为“最佳”。

    大数据文摘
  • 【图像分类】简述无监督图像分类发展现状

    无监督图像分类问题是图像分类领域一项极具挑战的研究课题,本文介绍了无监督图像分类算法的发展现状,供大家参考学习。

    用户1508658
  • 【独家】一文读懂聚类算法

    1. 聚类的基本概念 1.1 定义 聚类是数据挖掘中的概念,就是按照某个特定标准(如距离)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能...

    数据派THU
  • 独家 | 如何正确选择聚类算法?

    数据聚类是搭建一个正确数据模型的重要步骤。数据分析应当根据数据的共同点整理信息。然而主要问题是,什么通用性参数可以给出最佳结果,以及什么才能称为“最佳”。

    数据派THU
  • 数据挖掘从入门到放弃(六):K-means 聚类

    所谓物以类聚-人以群分,“类”指的是具有相似性的集合,聚类是指将数据集划分为若干类,使得各个类之内的数据最为相似,而各个类之间的数据相似度差别尽可能的大。聚类分...

    数据社

扫码关注云+社区

领取腾讯云代金券