专栏首页好好学java的技术栈高并发场景下缓存处理的一些思路

高并发场景下缓存处理的一些思路

作者:Java知音(微信号:Java_friends)

在实际的开发当中,我们经常需要进行磁盘数据的读取和搜索,因此经常会有出现从数据库读取数据的场景出现。但是当数据访问量次数增大的时候,过多的磁盘读取可能会最终成为整个系统的性能瓶颈,甚至是压垮整个数据库,导致系统卡死等严重问题。

常规的应用系统中,我们通常会在需要的时候对数据库进行查找,因此系统的大致结构如下所示:

当数据量较高的时候,需要减少对于数据库里面的磁盘读写操作,因此通常都会选择在业务系统和MySQL数据库之间加入一层缓存从而减少对数据库方面的访问压力。

但是很多时候,缓存在实际项目中的应用并非这么简单。下边我们来通过几个比较经典的缓存应用场景来列举一些问题:

1.缓存和数据库之间数据一致性问题

常用于缓存处理的机制我总结为了以下几种:

  • Cache Aside
  • Read Through
  • Write Through
  • Write Behind Caching

首先来简单说说Cache aside的这种方式:

Cache Aside模式

这种模式处理缓存通常都是先从数据库缓存查询,如果缓存没有命中则从数据库中进行查找。

这里面会发生的三种情况如下:

缓存命中:

当查询的时候发现缓存存在,那么直接从缓存中提取。

缓存失效:

当缓存没有数据的时候,则从database里面读取源数据,再加入到cache里面去。

缓存更新:

当有新的写操作去修改database里面的数据时,需要在写操作完成之后,让cache里面对应的数据失效。

这种Cache aside模式通常是我们在实际应用开发中最为常用到的模式。但是并非说这种模式的缓存处理就一定能做到完美。

关于这种模式下依然会存在缺陷。比如,一个是读操作,但是没有命中缓存,然后就到数据库中取数据,此时来了一个写操作,写完数据库后,让缓存失效,然后,之前的那个读操作再把老的数据放进去,所以,会造成脏数据。

Facebook的大牛们也曾经就缓存处理这个问题发表过相关的论文,链接如下:

★https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final170_update.pdf ”

分布式环境中要想完全的保证数据一致性是一件极为困难的事情,我们只能够尽可能的减低这种数据不一致性问题产生的情况。

Read Through模式

Read Through模式是指应用程序始终从缓存中请求数据。如果缓存没有数据,则它负责使用底层提供程序插件从数据库中检索数据。检索数据后,缓存会自行更新并将数据返回给调用应用程序。使用Read Through 有一个好处。

我们总是使用key从缓存中检索数据, 调用的应用程序不知道数据库, 由存储方来负责自己的缓存处理,这使代码更具可读性, 代码更清晰。但是这也有相应的缺陷,开发人员需要给编写相关的程序插件,增加了开发的难度性。

Write Through模式

Write Through模式和Read Through模式类似,当数据发生更新的时候,先去Cache里面进行更新,如果命中了,则先更新缓存再由Cache方来更新database。如果没有命中的话,就直接更新Cache里面的数据。

Write Behind Caching模式

Write Behind Caching 这种模式通常是先将数据写入到缓存里面,然后再异步的写入到database中进行数据同步,这样的设计既可以直接的减少我们对于数据的database里面的直接访问,降低压力,同时对于database的多次修改可以进行合并操作,极大的提升了系统的承载能力。

但是这种模式处理缓存数据具有一定的风险性,例如说当cache机器出现宕机的时候,数据会有丢失的可能。

2.缓存穿透问题

在高并发的场景中,缓存穿透是一个经常都会遇到的问题。

什么是缓存穿透?

大量的请求在缓存中没有查询到指定的数据,因此需要从数据库中进行查询,造成缓存穿透。

会造成什么后果?

大量的请求短时间内涌入到database中进行查询会增加database的压力,最终导致database无法承载客户单请求的压力,出现宕机卡死等现象。

常用的解决方案通常有以下几类:

1.空值缓存

在某些特定的业务场景中,对于数据的查询可能会是空的,没有实际的存在,并且这类数据信息在短时间进行多次的反复查询也不会有变化,那么整个过程中,多次的请求数据库操作会显得有些多余。

不妨可以将这些空值(没有查询结果的数据)对应的key存储在缓存中,那么第二次查找的时候就不需要再次请求到database那么麻烦,只需要通过内存查询即可。这样的做法能够大大减少对于database的访问压力。

2.布隆过滤器

通常对于database里面的数据的key值可以预先存储在布隆过滤器里面去,然后先在布隆过滤器里面进行过滤,如果发现布隆过滤器中没有的话,就再去redis里面进行查询,如果redis中也没有数据的话,再去database查询。这样可以避免不存在的数据信息也去往存储库中进行查询情况。

3.缓存雪崩场景

什么是缓存雪崩?

当缓存服务器重启或者大量缓存集中在某一个时间段失效,这样在失效的时候,也会给后端系统(比如DB)带来很大压力。

如何避免缓存雪崩问题?

1.使用加锁队列来应付这种问题。当有多个请求涌入的时候,当缓存失效的时候加入一把分布式锁,只允许抢锁成功的请求去库里面读取数据然后将其存入缓存中,再释放锁,让后续的读请求从缓存中取数据。但是这种做法有一定的弊端,过多的读请求线程堵塞,将机器内存占满,依然没有能够从根本上解决问题。

2.在并发场景发生前,先手动触发请求,将缓存都存储起来,以减少后期请求对database的第一次查询的压力。数据过期时间设置尽量分散开来,不要让数据出现同一时间段出现缓存过期的情况。

3.从缓存可用性的角度来思考,避免缓存出现单点故障的问题,可以结合使用 主从+哨兵的模式来搭建缓存架构,但是这种模式搭建的缓存架构有个弊端,就是无法进行缓存分片,存储缓存的数据量有限制,因此可以升级为Redis Cluster架构来进行优化处理。(需要结合企业实际的经济实力,毕竟Redis Cluster的搭建需要更多的机器)

4.Ehcache本地缓存 + Hystrix限流&降级,避免MySQL被打死。使用 Ehcache本地缓存的目的也是考虑在 Redis Cluster 完全不可用的时候,Ehcache本地缓存还能够支撑一阵。

使用 Hystrix进行限流 & 降级 ,比如一秒来了5000个请求,我们可以设置假设只能有一秒 2000个请求能通过这个组件,那么其他剩余的 3000 请求就会走限流逻辑。然后去调用我们自己开发的降级组件(降级),比如设置的一些默认值呀之类的。以此来保护最后的 MySQL 不会被大量的请求给打死。

本文分享自微信公众号 - 好好学java(SIHAIloveJAVA)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2020-02-28

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 你清楚HTTP缓存机制和原理吗?

    Http 缓存机制作为 web 性能优化的重要手段,对于从事 Web 开发的同学们来说,应该是知识体系库中的一个基础环节,同时对于有志成为前端架构师的同学来说是...

    好好学java
  • 面试前必须要知道的Redis面试题

    在前面学习我们都知道Redis不可能把所有的数据都缓存起来(内存昂贵且有限),所以Redis需要对数据设置过期时间,并采用的是惰性删除+定期删除两种策略对过期键...

    好好学java
  • 面试官问的hibernate和mybatis常见面试题

    我是一名java开发人员,hibernate以及mybatis都有过学习,在java面试中也被提及问道过,在项目实践中也应用过,现在对hibernate和myb...

    好好学java
  • 缓存雪崩,缓存穿透,缓存预热,缓存热备都是什么鬼?

    缓存雪崩,缓存穿透,缓存预热,缓存热备是在做缓存设计或者缓存应用时经常遇到的概念,也是缓存应用过程中必须熟知及知道 的东西。 缓存雪崩 当缓存处于单点情况下,一...

    Java技术栈
  • 图解 HTTP 缓存

    本文首发于政采云前端团队博客:图解 HTTP 缓存 https://www.zoo.team/article/http-cache

    前端劝退师
  • 图解 HTTP 缓存

    HTTP 的缓存机制,可以说这是前端工程师需要掌握的重要知识点之一。本文将针对 HTTP 缓存整体的流程做一个详细的讲解,争取做到大家读完整篇文章后,对缓存有一...

    政采云前端团队
  • 前端缓存之HTTP缓存

    说真的,当自己还很小白的时候,明明修改了JS的内容了,但是就是没有加载成功,那时候感觉好神奇,好没道理。后来知道了这是因为缓存的原因。

    wade
  • 深入理解浏览器的缓存机制

    缓存可以说是性能优化中简单高效的一种优化方式了。一个优秀的缓存策略可以缩短网页请求资源的距离,减少延迟,并且由于缓存文件可以重复利用,还可以减少带宽,降低网络负...

    前端森林
  • 啊哈!缓存

    缓存在分布式系统中应用广泛,如何在架构设计中使用缓存来优化业务一直都是一个重要的话题。本文主要对引入缓存需要解决的问题以及一些优秀的实践,让读者对缓存有一个比较...

    孟君
  • 听说,加缓存能提高性能?

    关注「前端向后」微信公众号,你将收获一系列「用心原创」的高质量技术文章,主题包括但不限于前端、Node.js以及服务端技术

    ayqy贾杰

扫码关注云+社区

领取腾讯云代金券