首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Java并发编程(01):线程的创建方式,状态周期管理

Java并发编程(01):线程的创建方式,状态周期管理

作者头像
知了一笑
发布2020-03-11 16:06:27
4430
发布2020-03-11 16:06:27
举报
文章被收录于专栏:知了一笑知了一笑

一、并发编程简介

1、基础概念

  • 程序

与计算机系统操作有关的计算机程序、规程、规则,以及可能有的文件、文档及数据。

  • 进程

进程是计算机中的程序,关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础。在早期面向进程设计的计算机结构中,进程是程序的基本执行实体;在面向线程设计的计算机结构中,进程是线程的容器。程序是指令、数据及其组织形式的描述,进程是程序的实体。

  • 线程

线程是操作系统能够进行运算调度的最小单位,包含在进程之中,是进程中的实际运作单位。一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务。

  • 顺序编程

程序中的所有步骤在任意时刻只能执行一个步骤。编程中绝大部分场景都是基于顺序编程。

  • 并发编程

在一台处理器上“同时”处理多个任务,并行处理程序中的复杂耗时任务。并发是在同一实体上的多个事件。多个事件在同一时间间隔发生。

2、入门案例

public class HelloThread {
    public static void main(String[] args) {
        System.out.println("Hello,Thread");
        // 当前线程名称
        System.out.println(Thread.currentThread().getName());
        // 线程系统的管理接口
        ThreadMXBean threadMXBean = ManagementFactory.getThreadMXBean();
        long[] threadIds = threadMXBean.getAllThreadIds() ;
        for (long id : threadIds) {
            ThreadInfo threadInfo = threadMXBean.getThreadInfo(id) ;
            System.out.println(threadInfo.getThreadId()+
                    ":"+threadInfo.getThreadName());
        }
    }
}

打印结果:

5:Monitor Ctrl-Break
4:Signal Dispatcher
3:Finalizer
2:Reference Handler
1:main

由此可知上述一段简单的Java程序,不止一条main线程在执行。

二、线程创建方式

1、继承Thread类

Thread类的基础结构:

class Thread implements Runnable

这里已经实现了Runnable接口。

public class CreateThread01 {
    public static void main(String[] args) {
        // 调用方法
        MyThread1 myThread1 = new MyThread1() ;
        myThread1.start();
    }
}
class MyThread1 extends Thread {
    // 设置线程名称
    public MyThread1 (){
        super("CicadaThread");
    }
    @Override
    public void run() {
        System.out.println(Thread.currentThread().getName());
    }
}

2、实现Runnable接口

如果创建的线程类已经存在父类,则不能再继承Thread类,在Java中不允许多继承,这时就可以实现Runnable接口。

public class CreateThread02 {
    public static void main(String[] args) {
        Thread thread = new Thread(new MyThread2(),"MyThread2") ;
        thread.start();
    }
}
class MyThread2 implements Runnable {
    @Override
    public void run() {
        System.out.println(Thread.currentThread().getName()+" run ...");
    }
}

3、匿名内部类

在一个类里面定义一个类,称为内部类。内部类就相当于外部类的一个成员,可以把内部类看成一个整体。

public class CreateThread03 {
    public static void main(String[] args) {
        //方式1
        new Thread("ThreadName1") {
            public void run() {
                System.out.println("1:"+Thread.currentThread().getName());
            };
        }.start();

        //方式2
        new Thread(new Runnable() {
            public void run() {
                System.out.println("2:"+Thread.currentThread().getName());
            }
        },"ThreadName2"){
            // 这里重写了run方法
            @Override
            public void run() {
                System.out.println("3:"+Thread.currentThread().getName());
            }
        }.start();
    }
}

4、返回值线程

顾名思义,该线程线程异步执行后,可以返回线程的处理结果。

public class CreateThread04 {
    public static void main(String[] args) throws Exception {
        MyThread4 myThread4 = new MyThread4();
        FutureTask<Integer> task = new FutureTask<>(myThread4);
        Thread thread = new Thread(task,"TaskThread");
        thread.start();
        // 等待获取结果
        // Integer result = task.get();
        // 设置获取结果的等待时间,超时抛出:TimeoutException
        Integer result = task.get(3, TimeUnit.SECONDS) ;
        System.out.println("result="+result);
    }
}
class MyThread4 implements Callable<Integer> {
    // 封装线程执行的任务
    @Override
    public Integer call() throws Exception {
        System.out.println(Thread.currentThread().getName());
        Thread.sleep(1000);
        return 2+3;
    }
}

5、定时任务

Timer是后台线程执行任务调度的工具类,可以根据规则配置定期执行或者重复执行。

class TimerTask implements Runnable

任务类:TimerTask结构实现Runnable接口。

public class CreateThread05 {
    public static void main(String[] args) {
        Timer timer = new Timer();
        timer.schedule(new TimerTask() {
            @Override
            public void run() {
                System.out.println("延迟1s,每隔3s执行一次");
            }
        }, 1000, 3000);
    }
}

6、线程池管理

线程池是一种多线程处理形式,处理过程中将任务添加到队列,然后在创建线程后自动启动这些任务。

public class CreateThread06 {
    public static void main(String[] args) {
        Executor threadPool = Executors.newFixedThreadPool(5);
        for(int i = 0 ;i < 5 ; i++) {
            threadPool.execute(new Runnable() {
                @Override
                public void run() {
                    System.out.println(Thread.currentThread().getName());
                }
            });
        }
    }
}

三、线程状态管理

1、状态描述

  • NEW

初始状态:构建线程实例后,调用start()方法启动前,处于该状态。

  • RUNNABLE

运行状态:在Java线程中,就绪和运行两个状态称作运行状态,在实际的执行过程中,这两个状态是随时可能切换的。启动start()方法被调用,或者sleep()后,join()结束等,就进入RUNNABLE就绪状态,开始等待CPU时间片;线程调度选中该线程、并分配了CPU时间片后,该线程尽管处于Runnable状态,就是运行状态(Running);

  • BLOCKED

阻塞状态:通常指被锁机制阻塞,表示线程正在获取有锁控制的资源。

  • WAITING

等待状态:进入该状态的线程,等待被其他线程发出通知或中断,也称显式唤醒。

  • TIMED_WAITING

超时等待状态:该状态不同于WAITING状态,该状态的线程可以在指定的时间后自动唤醒;

  • TERMINATED

终止状态:表示当前线程任务执行完毕。

2、案例流程分析

public class StateCycle01 {
    public static void main(String[] args) throws Exception {
        // 进入初始状态
        StateThread01 stateThread01 = new StateThread01();
        FutureTask<String> task = new FutureTask<>(stateThread01);
        Thread thread = new Thread(task,"GetValueThread");
        // 运行状态
        thread.start();
        // 超时等待结果
        String result = task.get(3, TimeUnit.SECONDS) ;
        System.out.println("result="+result);

        StateThread02 stateThread02 = new StateThread02() ;
        Thread thread1 = new Thread(stateThread02,"WaitThread");
        thread1.start();
    }
}
class StateThread01 implements Callable<String> {
    @Override
    public String call() throws Exception {
        // 超时等待
        Thread.sleep(1000);
        return "Hello,Cicada";
    }
}
class StateThread02 implements Runnable {
    @Override
    public void run() {
        synchronized (StateCycle01.class) {
            System.out.println("进入线程...");
            try {
                // 等待状态,放弃对象锁
                StateCycle01.class.wait(2000);
            } catch (Exception e) {
                e.printStackTrace();
            }
            System.out.println("线程继续...");
        }
    }
}

上述流程描述了线程不同状态之间的切换,基本流程图如下。

线程的状态描述起来不算复杂,但是每个状态间的切换,是非常的复杂,后续会分模块单个解释。

四、优缺点总结

1、优点说明

最直接作用使程序执行的效率大幅度提升;程序异步解耦,在web开发中,经常有后续的程序要执行,有需要快速的用户界面响应;当然熟练使用并发编程,也是一个优秀程序员必备技能 。

2、缺点分析

并发编程学习的曲线非常陡峭,难度较大;多线程之间争抢资源容易出现问题;并不是线程越多,执行速度就越快,线程之前切换是耗时的,需要合理创建和使用锁机制;线程创建和之间的通信需要很清晰的逻辑;线程死锁问题更是无法完全避免的问题;所以在一般情况下公司对线程使用的规范是十分严格的。

五、源代码地址

GitHub·地址
https://github.com/cicadasmile/java-base-parent
GitEE·地址
https://gitee.com/cicadasmile/java-base-parent
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2020-03-04,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 知了一笑 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、并发编程简介
    • 1、基础概念
      • 2、入门案例
      • 二、线程创建方式
        • 1、继承Thread类
          • 2、实现Runnable接口
            • 3、匿名内部类
              • 4、返回值线程
                • 5、定时任务
                  • 6、线程池管理
                  • 三、线程状态管理
                    • 1、状态描述
                      • 2、案例流程分析
                      • 四、优缺点总结
                        • 1、优点说明
                          • 2、缺点分析
                          • 五、源代码地址
                          相关产品与服务
                          容器服务
                          腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
                          领券
                          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档