首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >因为我说:volatile 是轻量级的 synchronized,面试官让我回去等通知!

因为我说:volatile 是轻量级的 synchronized,面试官让我回去等通知!

作者头像
磊哥
发布2020-03-19 11:41:24
5460
发布2020-03-19 11:41:24
举报
文章被收录于专栏:王磊的博客王磊的博客

因为我说:volatile 是轻量级的 synchronized,面试官让我回去等通知!

volatile 是并发编程的重要组成部分,也是面试常被问到的问题之一。不要向小强那样,因为一句:volatile 是轻量级的 synchronized,而与期望已久的大厂失之交臂。

volatile 有两大特性:保证内存的可见性和禁止指令重排序。那什么是可见性和指令重排呢?接下来我们一起来看。

内存可见性

要了解内存可见性先要从 Java 内存模型(JMM)说起,在 Java 中所有的共享变量都在主内存中,每个线程都有自己的工作内存,为了提高线程的运行速度,每个线程的工作内存都会把主内存中的共享变量拷贝一份进行缓存,以此来提高运行效率,内存布局如下图所示:

内存可见性.png
内存可见性.png

但这样就会产生一个新的问题,如果某个线程修改了共享变量的值,其他线程不知道此值被修改了,就会发生两个线程值不一致的情况,我们用代码来演示一下这个问题。

public class VolatileExample {
    // 可见性参数
    private static boolean flag = false;

    public static void main(String[] args) {
        new Thread(() -> {
            try {
                // 暂停 0.5s 执行
                Thread.sleep(500);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            flag = true;
            System.out.println("flag 被修改成 true");
        }).start();
        
        // 一直循环检测 flag=true
        while (true) {
            if (flag) {
                System.out.println("检测到 flag 变为 true");
                break;
            }
        }
    }
}

以上程序的执行结果如下:

flag 被修改成 true

我们会发现永远等不到 检测到 flag 变为 true 的结果,这是因为非主线程更改了 flag=true,但主线程一直不知道此值发生了改变,这就是内存不可见的问题。

内存的可见性是指线程修改了变量的值之后,其他线程能立即知道此值发生了改变。

我们可以使用 volatile 来修饰 flag,就可以保证内存的可见性,代码如下:

public class VolatileExample {
    // 可见性参数
    private static volatile boolean flag = false;

    public static void main(String[] args) {
        new Thread(() -> {
            try {
                // 暂停 0.5s 执行
                Thread.sleep(500);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            flag = true;
            System.out.println("flag 被修改成 true");
        }).start();
        
        // 一直循环检测 flag=true
        while (true) {
            if (flag) {
                System.out.println("检测到 flag 变为 true");
                break;
            }
        }
    }
}

以上程序的执行结果如下:

检测到 flag 变为 true flag 被修改成 true

指令重排

指令重排是指在执行程序时,编译器和处理器常常会对指令进行重排序,已到达提高程序性能的目的。 比如小强要去图书馆还上次借的书,随便再借一本新书,而此时室友小王也想让小强帮他还一本书,未发生指令重排的做法是,小强先把自己的事情办完,再去办室友的事,这样显然比较浪费时间,还有一种做法是,他先把自己的书和小王的书一起还掉,再给自己借一本新书,这就是指令重排的意义。

但指令重排不能保证指令执行的顺序,这就会造成新的问题,如下代码所示:

public class VolatileExample {
    // 指令重排参数
    private static int a = 0, b = 0;
    private static int x = 0, y = 0;

    public static void main(String[] args) throws InterruptedException {
        for (int i = 0; i < Integer.MAX_VALUE; i++) {
            Thread t1 = new Thread(() -> {
                // 有可能发生指令重排,先 x=b 再 a=1
                a = 1;
                x = b;
            });
            Thread t2 = new Thread(() -> {
                // 有可能发生指令重排,先 y=a 再 b=1
                b = 1;
                y = a;
            });
            t1.start();
            t2.start();
            t1.join();
            t2.join();
            System.out.println("第 " + i + "次,x=" + x + " | y=" + y);
            if (x == 0 && y == 0) {
                // 发生了指令重排
                break;
            }
            // 初始化变量
            a = 0;
            b = 0;
            x = 0;
            y = 0;
        }
    }
}

以上程序执行结果如下所示:

指令重排.png
指令重排.png

可以看出执行到 48526 次时发生了指令重排,y 就变成了非正确值 0,显然这不是我们想要的结果,这个时候就可以使用 volatile 来禁止指令重排。

以上我们通过代码的方式演示了指令重排和内存可见性的问题,接下来我们用代码来演示一下 volatile 同步方式的问题。

volatile 非同步方式

首先,我们使用 volatile 修饰一个整数变量,再启动两个线程分别执行同样次数的 ++ 和 -- 操作,最后发现执行的结果竟然不是 0,代码如下:

public class VolatileExample {
    public static volatile int count = 0; // 计数器
    public static final int size = 100000; // 循环测试次数

    public static void main(String[] args) {
        // ++ 方式
        Thread thread = new Thread(() -> {
            for (int i = 1; i <= size; i++) {
                count++;
            }
        });
        thread.start();
        // -- 方式
        for (int i = 1; i <= size; i++) {
            count--;
        }
        // 等所有线程执行完成
        while (thread.isAlive()) {}
        System.out.println(count); // 打印结果
    }
}

以上程序执行结果如下:

1065

可以看出,执行结果并不是我们期望的结果 0,我们把以上代码使用 synchronized 改造一下:

public class VolatileExample {
    public static int count = 0; // 计数器
    public static final int size = 100000; // 循环测试次数

    public static void main(String[] args) {
        // ++ 方式
        Thread thread = new Thread(() -> {
            for (int i = 1; i <= size; i++) {
                synchronized (VolatileExample.class) {
                    count++;
                }
            }
        });
        thread.start();
        // -- 方式
        for (int i = 1; i <= size; i++) {
            synchronized (VolatileExample.class) {
                count--;
            }
        }
        // 等所有线程执行完成
        while (thread.isAlive()) {}
        System.out.println(count); // 打印结果
    }
}

这次执行的结果变成了我们期望的值 0。

这说明 volatile 只是轻量级的线程可见方式,并不是轻量级的同步方式,所以并不能说 volatile 是轻量级的 synchronized,终于知道为什么面试官让我回去等通知了。

volatile 使用场景

既然 volatile 只能保证线程操作的可见方式,那它有什么用呢? volatile 在多读多写的情况下虽然一定会有问题,但如果是一写多读的话使用 volatile 就不会有任何问题。volatile 一写多读的经典使用示例就是 CopyOnWriteArrayList,CopyOnWriteArrayList 在操作的时候会把全部数据复制出来对写操作加锁,修改完之后再使用 setArray 方法把此数组赋值为更新后的值,使用 volatile 可以使读线程很快的告知到数组被修改,不会进行指令重排,操作完成后就可以对其他线程可见了,核心源码如下:

public class CopyOnWriteArrayList<E>
    implements List<E>, RandomAccess, Cloneable, java.io.Serializable {
    
    private transient volatile Object[] array;
    
    final void setArray(Object[] a) {
        array = a;
    }   
    //...... 忽略其他代码
}

总结

本文我们通过代码的方式演示了 volatile 的两大特性,内存可见性和禁止指令重排,使用 ++ 和 -- 的方式演示了 volatile 并非轻量级的同步方式,以及 volatile 一写多读的经典使用案例 CopyOnWriteArrayList。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2020-03-18 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 因为我说:volatile 是轻量级的 synchronized,面试官让我回去等通知!
    • 内存可见性
      • 指令重排
        • volatile 非同步方式
          • volatile 使用场景
            • 总结
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档