前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >使用k8s-prometheus-adapter实现HPA

使用k8s-prometheus-adapter实现HPA

作者头像
charlieroro
发布2020-03-24 09:58:25
5.8K0
发布2020-03-24 09:58:25
举报
文章被收录于专栏:charlieroro

环境:

kubernetes 1.11+/openshift3.11


自定义metric HPA原理:

首选需要注册一个apiservice(custom metrics API)。

当HPA请求metrics时,kube-aggregator(apiservice的controller)会将请求转发到adapter,adapter作为kubernentes集群的pod,实现了Kubernetes resource metrics API and custom metrics API,它会根据配置的rules从Prometheus抓取并处理metrics,在处理(如重命名metrics等)完后将metric通过custom metrics API返回给HPA。最后HPA通过获取的metrics的value对Deployment/ReplicaSet进行扩缩容。

adapter作为extension-apiserver(即自己实现的pod),充当了代理kube-apiserver请求Prometheus的功能。

如下是k8s-prometheus-adapter apiservice的定义,kube-aggregator通过下面的service将请求转发给adapter。v1beta1.custom.metrics.k8s.io是写在k8s-prometheus-adapter代码中的,因此不能任意改变。

代码语言:javascript
复制
apiVersion: apiregistration.k8s.io/v1beta1
kind: APIService
metadata:
  name: v1beta1.custom.metrics.k8s.io
spec:
  service:
    name: custom-metrics-apiserver
    namespace: custom-metrics
  group: custom.metrics.k8s.io
  version: v1beta1
  insecureSkipTLSVerify: true
  groupPriorityMinimum: 100
  versionPriority: 100

部署:

  • github下载k8s-prometheus-adapter
  • 参照官方文档部署adapter:
    • pull镜像:directxman12/k8s-prometheus-adapter:latest,修改镜像tag并push到本地镜像仓库
    • 生成证书:运行如下shell脚本(来自官方)生成cm-adapter-serving-certs.yaml,并将其拷贝到manifests/目录下,该证书用于kube-aggregator与adapter通信时认证adapter。注意下面证书有效时间为5年(43800h)以及授权的域名。 #!/usr/bin/env bash # exit immediately when a command fails set -e # only exit with zero if all commands of the pipeline exit successfully set -o pipefail # error on unset variables set -u # Detect if we are on mac or should use GNU base64 options case $(uname) in Darwin) b64_opts='-b=0' ;; *) b64_opts='--wrap=0' esac go get -v -u github.com/cloudflare/cfssl/cmd/... export PURPOSE=metrics echo '{"signing":{"default":{"expiry":"43800h","usages":["signing","key encipherment","'${PURPOSE}'"]}}}' > "ca-config.json" export SERVICE_NAME=custom-metrics-apiserver export ALT_NAMES='"custom-metrics-apiserver.custom-metrics","custom-metrics-apiserver.custom-metrics.svc"' echo "{\"CN\":\"${SERVICE_NAME}\", \"hosts\": [${ALT_NAMES}], \"key\": {\"algo\": \"rsa\",\"size\": 2048}}" | \ cfssl gencert -ca=ca.crt -ca-key=ca.key -config=ca-config.json - | cfssljson -bare apiserver cat <<-EOF > cm-adapter-serving-certs.yaml apiVersion: v1 kind: Secret metadata: name: cm-adapter-serving-certs data: serving.crt: $(base64 ${b64_opts} < apiserver.pem) serving.key: $(base64 ${b64_opts} < apiserver-key.pem) EOF 可以在custom-metrics-apiservice.yaml中设置insecureSkipTLSVerify: true时,kube-aggregator不会校验adapter的如上证书。如果需要启用校验,则需要在caBundle中添加openshift集群的ca证书(非openshift集群的自签证书会被认为是不可信任的证书),将openshift集群master节点的/etc/origin/master/ca.crt进行base64转码黏贴到caBundle字段即可。 base64 ca.crt 也可以黏贴openshift集群master节点的/root/.kube/config文件中的clusters.cluster.certificate-authority-data字段
      • 创建命名空间:kubectl create namespace custom-metrics
    • openshift的kube-system下面可能没有role extension-apiserver-authentication-reader,如果不存在,则需要创建 apiVersion: rbac.authorization.k8s.io/v1 kind: Role metadata: annotations: rbac.authorization.kubernetes.io/autoupdate: "true" labels: kubernetes.io/bootstrapping: rbac-defaults name: extension-apiserver-authentication-reader namespace: kube-system rules: - apiGroups: - "" resourceNames: - extension-apiserver-authentication resources: - configmaps verbs: - get
    • 修改custom-metrics-apiserver-deployment.yaml的--prometheus-url字段,指向正确的prometheus
    • 创建其他组件:kubectl create -f manifests/ 在部署时会创建一个名为custom-metrics-resource-readerclusterRole,用于授权adapter读取kubernetes cluster的资源,可以看到其允许读取的资源为namespaces/pods/services apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: custom-metrics-resource-reader rules: - apiGroups: - "" resources: - namespaces - pods - services verbs: - get - list
  • 部署demo:
    • 部署官方demo # cat sample-app.deploy.yaml apiVersion: apps/v1 kind: Deployment metadata: name: sample-app labels: app: sample-app spec: replicas: 1 selector: matchLabels: app: sample-app template: metadata: labels: app: sample-app spec: containers: - image: docker-local.art.aliocp.csvw.com/openshift3/autoscale-demo:v0.1.2 name: metrics-provider ports: - name: http containerPort: 8080
    • 创建service apiVersion: v1 kind: Service metadata: labels: app: sample-app name: sample-app namespace: custom-metrics spec: ports: - name: http port: 80 protocol: TCP targetPort: 8080 selector: app: sample-app type: ClusterIP 在custom-metrics命名空间下验证可以获取到metrics curl http://$(kubectl get service sample-app -o jsonpath='{ .spec.clusterIP }')/metrics
  • 部署serviceMonitor 由于HPA需要用到namespacepod等kubernetes的资源信息,因此需要使用servicemonitor注册方式来为metrics添加这些信息
    • openshift Prometheus operator对servicemonitor的限制如下 serviceMonitorNamespaceSelector: matchExpressions: - key: openshift.io/cluster-monitoring operator: Exists serviceMonitorSelector: matchExpressions: - key: k8s-app operator: Exists
    • 因此需要给custom-metrics命名空间添加标签 oc label namespace custom-metrics openshift.io/cluster-monitoring=true
    • openshift-monitoring命名空间中创建service-monitor # cat service-monitor.yaml kind: ServiceMonitor apiVersion: monitoring.coreos.com/v1 metadata: name: sample-app labels: k8s-app: testsample app: sample-app spec: namespaceSelector: any: true selector: matchLabels: app: sample-app endpoints: - port: http
    • 添加权限 oc adm policy add-cluster-role-to-user view system:serviceaccount:openshift-monitoring:prometheus-k8s oc adm policy add-role-to-user view system:serviceaccount:openshift-monitoring:prometheus-k8s -n custom-metrics
  • 测试HPA
    • 创建HPA,表示1秒请求大于0.5个时开始扩容 # cat sample-app-hpa.yaml kind: HorizontalPodAutoscaler apiVersion: autoscaling/v2beta1 metadata: name: sample-app spec: scaleTargetRef: # point the HPA at the sample application # you created above apiVersion: apps/v1 kind: Deployment name: sample-app # autoscale between 1 and 10 replicas minReplicas: 1 maxReplicas: 10 metrics: # use a "Pods" metric, which takes the average of the # given metric across all pods controlled by the autoscaling target - type: Pods pods: # use the metric that you used above: pods/http_requests metricName: http_requests_per_second # target 500 milli-requests per second, # which is 1 request every two seconds targetAverageValue: 500m 通过oc describe hpa sample-app查看hpa是否运行正常
    • 持续执行命令curl http://$(kubectl get service sample-app -o jsonpath='{ .spec.clusterIP }')/metrics发出请求
    • 通过命令kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/custom-metrics/pods/*/http_requests_per_second"查看其对应的value值,当其值大于500m时开始扩容 # oc get pod NAME READY STATUS RESTARTS AGE sample-app-6d55487cdd-dc6qz 1/1 Running 0 18h sample-app-6d55487cdd-w6bbb 1/1 Running 0 5m sample-app-6d55487cdd-zbdbr 1/1 Running 0 5m
    • 过段时间,当kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/custom-metrics/pods/*/http_requests_per_second"的值持续低于500m时进行缩容,缩容时间由--horizontal-pod-autoscaler-downscale-stabilization指定,默认5分钟。 提供oc get hpaTARGETS字段可以查看扩缩容比例 # oc get hpa NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE sample-app Deployment/sample-app 66m/500m 1 10 1 3h

Adapter config

部署adapter前需要配置adapter的rule,用于预处理metrics,默认配置为manifests/custom-metrics-config-map.yaml。adapter的配置主要分为4个:

  • Discovery:指定需要处理的Prometheus的metrics。通过seriesQuery挑选需要处理的metrics集合,可以通过seriesFilters精确过滤metrics。 seriesQuery可以根据标签进行查找(如下),也可以直接指定metric name查找 seriesQuery: '{__name__=~"^container_.*_total",container_name!="POD",namespace!="",pod_name!=""}' seriesFilters: - isNot: "^container_.*_seconds_total" seriesFilters: is: <regex>, 匹配包含该正则表达式的metrics. isNot: <regex>, 匹配不包含该正则表达式的metrics.
  • Association:设置metric与kubernetes resources的映射关系,kubernetes resorces可以通过kubectl api-resources命令查看。overrides会将Prometheus metric label与一个kubernetes resource(下例为deployment)关联。需要注意的是该label必须是一个真实的kubernetes resource,如metric的pod_name可以映射为kubernetes的pod resource,但不能将container_image映射为kubernetes的pod resource,映射错误会导致无法通过custom metrics API获取正确的值。这也表示metric中必须存在一个真实的resource 名称,将其映射为kubernetes resource。 resources: overrides: microservice: {group: "apps", resource: "deployment"}
  • Naming:用于将prometheus metrics名称转化为custom metrics API所使用的metrics名称,但不会改变其本身的metric名称,即通过curl http://$(kubectl get service sample-app -o jsonpath='{ .spec.clusterIP }')/metrics获得的仍然是老的metric名称。如果不需要可以不执行这一步。 # match turn any name <name>_total to <name>_per_second # e.g. http_requests_total becomes http_requests_per_second name: matches: "^(.*)_total$" as: "${1}_per_second" 如本例中HPA后续可以通过/apis/{APIService-name}/v1beta1/namespaces/{namespaces-name}/pods/*/http_requests_per_second获取metrics
  • Querying:处理调用custom metrics API获取到的metrics的value,该值最终提供给HPA进行扩缩容 # convert cumulative cAdvisor metrics into rates calculated over 2 minutes metricsQuery: "sum(rate(<<.Series>>{<<.LabelMatchers>>,container_name!="POD"}[2m])) by (<<.GroupBy>>)" metricsQuery 字段使用Go template将URL请求转变为Prometheus的请求,它会提取custom metrics API请求中的字段,并将其划分为metric name,group-resource,以及group-resource中的一个或多个objects,对应如下字段:
    • Series: metric名称
    • LabelMatchers: 以逗号分割的objects,当前表示特定group-resource加上命名空间的label(如果该group-resource 是namespaced的)
    • GroupBy:以逗号分割的label的集合,当前表示LabelMatchers中的group-resource label

    假设metrics http_requests_per_second如下 http_requests_per_second{pod="pod1",service="nginx1",namespace="somens"} http_requests_per_second{pod="pod2",service="nginx2",namespace="somens"} 当调用kubectl get --raw "/apis/{APIService-name}/v1beta1/namespaces/somens/pods/*/http_request_per_second"时,metricsQuery字段的模板的实际内容如下:

    • Series: "http_requests_total"
    • LabelMatchers: "pod=~\"pod1|pod2",namespace="somens"
    • GroupBy:pod

    adapter使用字段rulesexternalRules分别表示custom metrics和external metrics,如本例中 apiVersion: v1 kind: ConfigMap metadata: name: adapter-config namespace: openshift-monitoring data: config.yaml: | externalRules: - seriesQuery: '{namespace!="",pod!=""}' seriesFilters: [] resources: overrides: namespace: resource: namespace pod: resource: pod metricsQuery: sum(rate(<<.Series>>{<<.LabelMatchers>>}[22m])) by (<<.GroupBy>>) rules: - seriesQuery: '{namespace!="",pod!=""}' seriesFilters: [] resources: overrides: namespace: resource: namespace pod: resource: pod name: matches: "^(.*)_total" as: "${1}_per_second" metricsQuery: sum(rate(<<.Series>>{<<.LabelMatchers>>}[2m])) by (<<.GroupBy>>)


HPA的配置

HPA通常会根据type从aggregated APIs (metrics.k8s.io, custom.metrics.k8s.io, external.metrics.k8s.io)的资源路径上拉取metrics

HPA支持的metrics类型有4种(下述为v2beta2的格式):

  • resource:目前仅支持cpumemory。target可以指定数值(targetAverageValue)和比例(targetAverageUtilization)进行扩缩容 HPA从metrics.k8s.io获取resource metrics
  • pods:custom metrics,这类metrics描述了pod类型,target仅支持按指定数值(targetAverageValue)进行扩缩容。targetAverageValue 用于计算所有相关pods上的metrics的平均值 type: Pods pods: metric: name: packets-per-second target: type: AverageValue averageValue: 1k HPA从custom.metrics.k8s.io获取custom metrics
  • object:custom metrics,这类metrics描述了相同命名空间下的(非pod)类型。target支持通过valueAverageValue进行扩缩容,前者直接将metric与target比较进行扩缩容,后者通过metric/相关的pod数目与target比较进行扩缩容 type: Object object: metric: name: requests-per-second describedObject: apiVersion: extensions/v1beta1 kind: Ingress name: main-route target: type: Value value: 2k
  • external:kubernetes 1.10+。这类metrics与kubernetes集群无关(pods和object需要与kubernetes中的某一类型关联)。与object类似,target支持通过valueAverageValue进行扩缩容。由于external会尝试匹配所有kubernetes资源的metrics,因此实际中不建议使用该类型。 HPA从external.metrics.k8s.io获取external metrics - type: External external: metric: name: queue_messages_ready selector: "queue=worker_tasks" target: type: AverageValue averageValue: 30
  • 1.6版本支持多metrics的扩缩容,当其中一个metrics达到扩容标准时就会创建pod副本(当前副本<maxReplicas)

注:target的value的一个单位可以划分为1000份,每一份以m为单位,如500m表示1/2个单位。参见Quantity

kubernetes HPA的算法如下:

代码语言:javascript
复制
desiredReplicas = ceil[currentReplicas * ( currentMetricValue / desiredMetricValue )]

当使用targetAverageValuetargetAverageUtilization时,currentMetricValue会取HPA指定的所有pods的metric的平均值


Kubernetes metrics的获取

假设注册的APIService为custom.metrics.k8s.io/v1beta1,在注册好APIService后HorizontalPodAutoscaler controller会从以/apis/custom.metrics.k8s.io/v1beta1为根API的路径上抓取metrics。metrics的API path可以分为namespacednon-namespaced类型的。通过如下方式校验HPA是否可以获取到metrics:

namespaced
  • 获取指定namespace下指定object类型和名称的metrics
代码语言:javascript
复制
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/{namespace-name}/{object-type}/{object-name}/{metric-name...}"

如获取monitor命名空间下名为grafana的pod的start_time_seconds metric

代码语言:javascript
复制
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/monitor/pods/grafana/start_time_seconds"
  • 获取指定namespace下所有特定object类型的metrics
代码语言:javascript
复制
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/{namespace-name}/pods/*/{metric-name...}"

如获取monitor命名空间下名为所有pod的start_time_seconds metric

代码语言:javascript
复制
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/monitor/pods/*/start_time_seconds"
  • 使用labelSelector可以选择带有特定label的object
代码语言:javascript
复制
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/{namespace-name}/{object-type}/{object-name}/{metric-name...}?labelSelector={label-name}"
代码语言:javascript
复制
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/{namespace-name}/pods/*/{metric-name...}?labelSelector={label-name}"
non-namespaced

non-namespaced和namespaced的类似,主要有node,namespace,PersistentVolume等。non-namespaced访问有些与custom metrics API描述不一致。

  • 访问object为namespace的方式如下如下
代码语言:javascript
复制
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/{namespace-name}/metrics/{metric-name...}"
代码语言:javascript
复制
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/*/metrics/{metric-name...}"
  • 访问node的方式如下
代码语言:javascript
复制
 kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/nodes/{node-name}/{metric-name...}"

DEBUG:

  • 使用如下方式查看注册的APIService发现的所有rules kubectl get --raw /apis/custom.metrics.k8s.io/v1beta1 如果获取失败,可以看下使用oc get apiservice v1beta1.custom.metrics.k8s.io -oyaml查看statusmessage的相关信息 如果获取到的resource为空,则需要校验deploy中的Prometheus url是否正确,是否有权限等
  • 通过如下方式查看完整的请求过程(--v=8) kubectl get --raw “/apis/custom.metrics.k8s.io/v1beta1/namespaces/{namespace-name}/pods/*/{metric-name...}" --v=8
  • 如果上述过程正确,但获取到的items为空
    • 首先保证k8s-prometheus-adapter的参数--metrics-relist-interval设置值大于Prometheus的参数scrape_interval
    • 确保k8s-prometheus-adapter rulesseriesQuery规则可以抓取到Prometheus的数据
    • 确保k8s-prometheus-adapter rulesmetricsQuery规则可以抓取到计算出数据,此处需要注意的是,如果使用到了计算某段时间的数据,如果时间设置过短,可能导致没有数据生成

TIPS:

  • 官方提供了End-to-end walkthrough,但需要采集的metrics中包含podnamespace label,否则在官方默认配置下无法采集到metrics。
  • Configuration Walkthroughs一步步讲解了如何配置adapter config
  • 在goland里面使用如下参数可以远程调试adapter: --secure-port=6443 --tls-cert-file=D:\adapter\serving.crt --tls-private-key-file=D:\adapter\serving.key --logtostderr=true --prometheus-url=${prometheus-url} --metrics-relist-interval=70s --v=10 --config=D:\adapter\config.yaml --lister-kubeconfig=D:\adapter\k8s-config.yaml --authorization-kubeconfig=D:\adapter\k8s-config.yaml --authentication-kubeconfig=D:\adapter\k8s-config.yaml

参考:

Kubernetes pod autoscaler using custom metrics

Kubernetes API Aggregation Setup — Nuts & Bolts

Configure the Aggregation Layer

Aggregation

Setup an Extension API Server

OpenShift下的JVM监控

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2019-11-20 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 环境:
  • 自定义metric HPA原理:
  • 部署:
  • Adapter config
  • HPA的配置
  • Kubernetes metrics的获取
    • namespaced
      • non-namespaced
      • DEBUG:
      • TIPS:
      • 参考:
      相关产品与服务
      容器服务
      腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档