前面我们分析过一个查询语句的执行流程,并且解释了执行过程中涉及的模块。一条查询语句一般是经过连接器、分析器、优化器、执行器等功能模块,最后到达存储引擎。
这次,我们来深入学习一条更新语句在 MySQL 中的执行流程。通过此文我们可以充分了解 什么是 Redo Log
首先我们先创建一张表,只有主键 ID,以及 int 类型字段 c。
create table T(ID int primary key, c int);
现在我们要更新一条数据,语句如下:
update T set c=c+1 where ID=2;
更新语句其实也跟查询语句的流程类似,只不过多了 redo log、undo log 以及 binlog 日志。
上一篇查询语句的执行流程我们说过,在一个表上有更新的时候,跟这个表有关的查询缓存会失效,所以这条语句会把整个 T 表的缓存结果都清空。这也是为何我们不建议使用查询缓存的原因。
假如您当了小超市老板,自然会有一个账本记录交易记录,但是可能还要一个赊账记录。因为村里有个姑娘叫小芳,长得美丽又善良。有时候会到你这里白嫖,额,不是,是赊账。你先把记录写在小粉板上,等夜深人静的时候就把粉板的数据同步到归档的账本中。当然粉板也有满的时候,所以当粉板满了就要对账写入账本中,
所以,如果有人要来赊账,或者还账的时候,通常有两种做法:
在生意忙的时候,我们肯定选择后者,因为前者操作太麻烦了。首先,你得找到这个人的赊账总额那条记录。你想想,密密麻麻几十页,掌柜要找到那个名字,可 能还得带上老花镜慢慢找,找到之后再拿出算盘计算,最后再将结果写回到账本上。这个时候小芳来赊账,等半天。以后还怎么约小芳到小树林呢?
在 MySQL
中也有这个问题,如果每一次操作都要写进磁盘,然后磁盘也要找到对应的记录,然后再更新。整个过程的 IO 成本,查询成本都很高,为了解决这个问题,MySQL
的设计者就用了类似小超市老板粉板的思路来提升更新效率。
而粉板和账本配合的整个过程,其实就是 MySQ
L 里经常说到的 WAL
技术,WAL
的全称是Write-Ahead Logging
,它的关键点就是先写日志,再写磁盘,也就是先写粉板,等不忙的时候再写账本。
首先我们要明确的是binlog
日志是在 server 层的,而redo log
是 InnoDB
特有的。
当有一条记录需要更新的时候,InnoDB
引擎就会先把记录写到 redo log
(粉板)中,并更新内存,这个时候就算完成了。同时 引擎会在适当的时候将这个记录更新到磁盘里,而更新往往是系统比较闲的时候,这就是打样以后掌柜做的事情。
类似的,InnoDB 的 redo log 是固定大小的,比如可以配置为一组 4 个文件,每个文件的大小是 1GB,那么这块“粉板”总共就可以记录 4GB 的操作。从头开始写,写到末尾就又回到开头循环写,如下面这个图所示。
write pos 是当前记录的位置,一边写一边后移,写到第 3 号文件末尾后就回到 0 号文件开头。checkpoint 是当前要擦除的位置,也是往后推移并且循环的,擦除记录前要把记录更新到数据文件。
write pos 和 checkpoint 之间的是“粉板”上还空着的部分,可以用来记录新的操作。如果 write pos 追上 checkpoint,表示“粉板”满了,这时候不能再执行新的更新,得停下来先擦掉一些记录,把 checkpoint 推进一下。
有了 redo log,InnoDB 就可以保证即使数据库发生异常重启,之前提交的记录都不会丢失,这个能力称为crash-safe。
要理解 crash-safe 这个概念,可以想想我们前面赊账记录的例子。只要赊账记录记在了粉板上或写在了账本上,之后即使掌柜忘记了,比如突然停业几天,恢复生意后依然可以通过账本和粉板上的数据明确赊账账目。
MySQL 的整体架构其实有两块:一块是 Server 层,还有一块是 引擎层,负责存储相关。前面我们提到的 redo log
是InnoDB
引擎持有的,而 Server 层也有自己的日志,叫 binlog(归档日志)。
那为何会有两份日志呢?
因为最开始 MySQL 里并没有 InnoDB 引擎。MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力(因为是 Server 层与引擎层是两个独立的模块),binlog 日志只能用于归档。而 InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统——也就是 redo log 来实现 crash-safe 能力。
假如只有 binlog,当 Server 层 binlog 日志写完后 引擎层还没有同步到磁盘就断电了。这个时候重启后 binlog 记录了更新操作,但是引擎层并没有写入磁盘中就导致了从库使用该 binlog 同步数据不一致。
有了对两个日志的概念理解,我们就可以继续理解执行器与 InnoDB 引擎执行 update 语句时的内部流程。
最后三步看上去有点“绕”,将 redo log 的写入拆成了两个步骤:prepare 和 commit,这就是"两阶段提交"。
如下图所示,绿色代表执行器执行,白色代表 InnoDB 引擎执行:
为什么必须有“两阶段提交”呢?这是为了让两份日志之间的逻辑一致。要说明这个问题,我们得从文章开头的那个问题说起:怎样让数据库恢复到半个月内任意一秒的状态?
前面我们说过了,binlog 会记录所有的逻辑操作,并且是采用“追加写”的形式。如果你的 DBA 承诺说半个月内可以恢复,那么备份系统中一定会保存最近半个月的所有 binlog,同时系统会定期做整库备份。这里的“定期”取决于系统的重要性,可以是一天一备,也可以是一周一备。
当需要恢复到指定的某一秒时,比如某天下午两点发现中午十二点有一次误删表,需要找回数据,那你可以这么做:
由于 redo log 和 binlog 是两个独立的逻辑,如果不用两阶段提交,要么就是先写完 redo log 再写 binlog,或者采用反过来的顺序。我们看看这两种方式会有什么问题。(会造成数据不一致)
仍然用前面的 update 语句来做例子。假设当前 ID=2 的行,字段 c 的值是 0,再假设执行 update 语句过程中在写完第一个日志后,第二个日志还没有写完期间发生了 crash,会出现什么情况呢?
假如在引擎 写完 redo log 后,bin log 没有写完,异常重启,依然可以根据 redo log 日志把数据恢复,但是 binlog 没有记录这个语句。所以从库 通过 binlog 同步数据就导致没有把这个这行数据同步过来,丢失了这个事务操作造成数据不一致。
如果写完 binlog 后 崩溃,由于 redo log 还没有写,崩溃恢复后这个事务无效,但是 binlog 却有记录。从库根据 这个 binlog 日志就会导致多处一个事务,与主库不一致。
简单说,redo log 和 binlog 都可以用于表示事务的提交状态,而两阶段提交就是让这两个状态保持逻辑上的一致。(敲黑板了同学们)