首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >marker基因的表达量可视化

marker基因的表达量可视化

作者头像
生信技能树jimmy
发布2020-03-30 14:34:15
1.2K0
发布2020-03-30 14:34:15
举报
文章被收录于专栏:单细胞天地单细胞天地
前言

这次的任务是模仿原文的:

肿瘤组织的差异分析(Fig. 4a、c)

下载数据

之前的分析都是基于第一个病人的PBMC,这次将基于这位病人的tumor:GSE117988_raw.expMatrix_Tumor.csv.gz

start_time <- Sys.time()
raw_dataTumor <- read.csv('./GSE117988_raw.expMatrix_Tumor.csv.gz', header = TRUE, row.names = 1)
end_time <- Sys.time()
end_time - start_time
# Time difference of 47.00589 secs
dim(raw_dataTumor) # 21861基因,7431细胞- already filtered

注意:之前PBMC包含了四个时间点的样本,这里的Tumor包含了2个样本(治疗之前Pre和复发AR)

常规流程

step1: 归一化
dataTumor <- log2(1 + sweep(raw_dataTumor, 2, median(colSums(raw_dataTumor))/colSums(raw_dataTumor), '*'))
> head(colnames(dataTumor))
[1] "AAACCTGAGGATGTAT.1" "AAACCTGCAGCGATCC.1" "AAACCTGGTACGAAAT.1" "AAACGGGAGCTGGAAC.1" "AAACGGGAGGAGTTGC.1"
[6] "AAACGGGAGTTTAGGA.1"
step2: 自定义划分细胞类型
cellTypes <- sapply(colnames(dataTumor), function(x) ExtractField(x, 2, '[.]'))
cellTypes <-ifelse(cellTypes == '1', 'Tumor_Before', 'Tumor_AcquiredResistance')
> table(cellTypes)
cellTypes
Tumor_AcquiredResistance             Tumor_Before 
                    5188                     2243 
step3: 表达矩阵质控
# 第一点:基因在多少细胞表达 
> fivenum(apply(dataTumor,1,function(x) sum(x>0) ))
   VP2 GPRIN2   EML3 ZNF140  RPLP1 
     1      8    103    566   7431
# 第二点:细胞中有多少表达的基因
> fivenum(apply(dataTumor,2,function(x) sum(x>0) ))
GGAACTTAGGAATCGC.1 TACGGTACAAGCCGCT.2 CCTACCAAGCGTGAGT.1 TGAGCCGAGACTAGAT.2 GATCGTAGTCATATGC.2 
             192.0             1059.0             1380.0             1971.5             5888.0 

看到大部分基因在500多个细胞表达,细胞平均能表达1000个基因以上

step4: 创建Seurat对象
tumor <- CreateSeuratObject(dataTumor, 
                           min.cells = 1, min.features = 0, project = '10x_Tumor')
> tumor 
An object of class seurat in project 10x_Tumor 
 21861 genes across 7431 samples.
step5: 添加metadata (nUMI 和 细胞类型)
tumor <- AddMetaData(object = tumor, metadata = apply(raw_dataTumor, 2, sum), col.name = 'nUMI_raw')
tumor <- AddMetaData(object = tumor, metadata = cellTypes, col.name = 'cellTypes')
step6: 聚类标准流程
start_time <- Sys.time()
tumor <- ScaleData(object = tumor, vars.to.regress = c('nUMI_raw'), model.use = 'linear', use.umi = FALSE)
tumor <- FindVariableGenes(object = tumor, mean.function = ExpMean, dispersion.function = LogVMR, x.low.cutoff = 0.0125, x.high.cutoff = 3, y.cutoff = 0.5)
tumor <- RunPCA(object = tumor, pc.genes = tumor@var.genes)
tumor <- RunTSNE(object = tumor, dims.use = 1:10, perplexity = 25)
end_time <- Sys.time()
end_time - start_time
# Time difference of 3.324982 mins
TSNEPlot(tumor, group.by = 'cellTypes', colors.use = c('#EF8A62', '#67A9CF'))
save(tumor,file = 'patient1.Tumor.V2.output.Rdata') # 3.6Gb 大小

接着进行基因可视化

rm(list = ls()) 
options(warn=-1) 
start_time <- Sys.time()
load('patient1.Tumor.V2.output.Rdata')
end_time <- Sys.time()
end_time - start_time
# Time difference of 19.83097 secs
取出log归一化后的表达矩阵
count_matrix=tumor@data
> count_matrix[1:4,1:4]
              AAACCTGAGGATGTAT.1 AAACCTGCAGCGATCC.1 AAACCTGGTACGAAAT.1 AAACGGGAGCTGGAAC.1
VP2                    0.0000000                  0                  0                  0
largeTAntigen          0.9670525                  0                  0                  0
smallTAntigen          0.0000000                  0                  0                  0
RP11-34P13.7           0.0000000                  0                  0                  0
取出细胞分群信息
cluster=tumor@meta.data$cellTypes
> table(cluster)
cluster
Tumor_AcquiredResistance             Tumor_Before 
                    5188                     2243
提取基因信息

文章主要探索了治疗前和复发后的HLA-A和HLA-B的变化,于是我们先看看有没有这两个基因

allGenes = row.names(tumor@raw.data)
> allGenes[grep('HLA',allGenes)]
 [1] "HHLA3"    "HLA-F"    "HLA-G"    "HLA-A"    "HLA-E"    "HLA-C"    "HLA-B"    "HLA-DRA"  "HLA-DRB5"
[10] "HLA-DRB1" "HLA-DQA1" "HLA-DQB1" "HLA-DQA2" "HLA-DQB2" "HLA-DOB"  "HLA-DMB"  "HLA-DMA"  "HLA-DOA" 
[19] "HLA-DPA1" "HLA-DPB1"
对HLA-A操作
FeaturePlot(object = tumor, 
            features.plot ='HLA-A', 
            cols.use = c("grey", "blue"), 
            reduction.use = "tsne")
看HLA-A表达量
> table(count_matrix['HLA-A',]>0, cluster)
       cluster
        Tumor_AcquiredResistance Tumor_Before
  FALSE                     2282         1057
  TRUE                      2906         1186
对HLA-B操作
FeaturePlot(object = tumor, 
            features.plot ='HLA-B', 
            cols.use = c("grey", "blue"), 
            reduction.use = "tsne")

可以看到治疗前HLA-A基因有1186个表达,1057个不表达;复发后这个基因表达和不表达的数量也相近

> table(count_matrix['HLA-B',]>0, cluster)
       cluster
        Tumor_AcquiredResistance Tumor_Before
  FALSE                     4794         1258
  TRUE                       394          985

对HLA-B来讲,不管是治疗前还是复发后,它的表达和不表达差异就很明显。另外从治疗前到复发,这个基因的表达数量的变化更显著

小问题:HLA基因这么多,我们怎么找到全部的具有相似模式的基因?

所谓相似表达模式,就是像HLA-B基因一样,在一个群表达很多,另一个群表达很少,通过卡方检验(http://rpubs.com/chixinzero/490992)就能看出区别

>  chisq.test(table(count_matrix['HLA-A',]>0, cluster))

    Pearson's Chi-squared test with Yates' continuity correction

data:  table(count_matrix["HLA-A", ] > 0, cluster)
X-squared = 6.1069, df = 1, p-value = 0.01347

>  chisq.test(table(count_matrix['HLA-B',]>0, cluster))

    Pearson's Chi-squared test with Yates' continuity correction

data:  table(count_matrix["HLA-B", ] > 0, cluster)
X-squared = 1364.4, df = 1, p-value < 2.2e-16

看p值,HLA-B显著性相比HLA-A就非常强,我们就是要挑出和HLA-B类似的,也就是极显著的,设定p值的阈值为0.01

HLA_genes <- allGenes[grep('HLA',allGenes)]
# 将输出结果保存在向量中
HLA_result <- c()
for (gene in HLA_genes) {
  tmp <- chisq.test(table(count_matrix[gene,]>0, cluster))
  if (tmp$p.value<0.01) {
    HLA_result[gene] <- gene
  }
}
> names(HLA_result)
 [1] "HLA-F"    "HLA-E"    "HLA-C"    "HLA-B"    "HLA-DRA"  "HLA-DRB5" "HLA-DRB1" "HLA-DQA1" "HLA-DQB1"
[10] "HLA-DQA2" "HLA-DMB"  "HLA-DMA"  "HLA-DOA"  "HLA-DPA1" "HLA-DPB1"
> length(HLA_result)
[1] 15
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-11-04,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 单细胞天地 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 下载数据
  • 常规流程
    • step1: 归一化
      • step2: 自定义划分细胞类型
        • step3: 表达矩阵质控
          • step4: 创建Seurat对象
            • step5: 添加metadata (nUMI 和 细胞类型)
              • step6: 聚类标准流程
              • 接着进行基因可视化
                • 取出log归一化后的表达矩阵
                  • 取出细胞分群信息
                    • 提取基因信息
                      • 对HLA-A操作
                        • 看HLA-A表达量
                          • 对HLA-B操作
                            • 小问题:HLA基因这么多,我们怎么找到全部的具有相似模式的基因?
                            领券
                            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档